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The Estimation Performance of Nonlinear Least
Squares for Phase Retrieval

Meng Huang and Zhiqiang Xu

Abstract— Suppose that y = |Ax0| + η where x0 ∈ R
d is the

target signal and η ∈ R
m is a noise vector. The aim of phase

retrieval is to estimate x0 from y. A popular model for estimating
x0 is the nonlinear least squares �x := argminx�|Ax| − y�2.
One has already developed many efficient algorithms for solving
the model, such as the seminal error reduction algorithm. In this
paper, we present the estimation performance of the model with
proving that ��x − x0� � �η�2/

√
m under the assumption

of A being a Gaussian random matrix. We also prove the
reconstruction error �η�2/

√
m is sharp. For the case where

x0 is sparse, we study the estimation performance of both the
nonlinear Lasso of phase retrieval and its unconstrained version.
Our results are non-asymptotic, and we do not assume any
distribution on the noise η. To the best of our knowledge, our
results represent the first theoretical guarantee for the nonlinear
least squares and for the nonlinear Lasso of phase retrieval.

Index Terms— Phase retrieval, estimation performance,
nonlinear least squares, nonlinear Lasso.

I. INTRODUCTION

A. Phase Retrieval

SUPPOSE that x0 ∈ Fd with F ∈ {R, C} is the target
signal. The information that we gather about x0 is

y = |Ax0| + η,

where A = (a1, . . . , am)� ∈ F
m×d is the known mea-

surement matrix and η ∈ Rm is a noise vector. Throughout
this paper, we often assume that A ∈ Rm×d is a Gaussian
random matrix with entries ajk ∼ N(0, 1) and m � d.
In addition, we also assume that η is a fixed or random vector
independent of A.

The aim of phase retrieval is to estimate x0 from y. Phase
retrieval is raised in numerous applications such as X-ray
crystallography [10], [16], microscopy [15], astronomy [5],
coherent diffractive imaging [8], [21] and optics [27] etc.
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A popular model for recovering x0 is

argmin
x∈Fd

�|Ax| − y�2. (I.1)

If x0 is sparse, both the constrained nonlinear Lasso model

min
x∈Fd

�|Ax| − y�2 s.t. �x�1 ≤ R, (I.2)

and its unconstrained version

min
x∈Fd

�|Ax| − y�2
2 + λ�x�1, (I.3)

have been considered for recovering x0. As we will see
later, one has already developed many efficient algorithms to
solve (I.1). The aim of this paper is to study the performance
of (I.1) as well as of (I.2) and (I.3) from the theoretical
viewpoint. Particularly, we focus on the question: how well
can one recover x0 by solving these above three models?

B. Algorithms for Phase Retrieval

1) Algorithms for (I.1): Although the objective function
in (I.1) is non-convex, many computational algorithms turn
to be successful actually with a good initialization. One of
the oldest algorithms for phase retrieval is the error-reduction
algorithm which is raised in [6], [8]. The error-reduction
algorithm is to solve the following model

min
x∈Fd,C∈Fm×m

�Ax− Cy�2, (I.4)

where C = diag(c1, . . . , cm) with |cj | = 1, j = 1, . . . , m.
The error-reduction is an alternating projection algorithm that
iterates between C and x. A simple observation is that x#

is a solution to (I.1) if and only if (x#, diag(sign(Ax#)))
is a solution to (I.4). Hence, the error-reduction algorithm
can be used to solve (I.1). The convergence property of the
error-reduction algorithm is studied in [18], [26]. Beyond the
error-reduction algorithm, one also develops many algorithms
to solve (I.1). For example, in [28], Wang, Giannakis and Eldar
develop the TAF method for solving the model with proving
TAF converges linearly to the global optimal solution. In [32],
Zhang, Zhou, Liang and Chi also develop the Reshaped WF
algorithm and prove the linear convergence to global solution
of (I.1). In [31], Wei proposed the Kaczmarz algorithms which
is exactly stochastic gradient descent for (I.1) (see [23]). The
convergence property of the Kaczmarz algorithm was studied
in [14], [23]. For the sparse phase retrieval, a standard �1

norm term is added to the above objective functions to obtain
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the models for sparse phase retrieval, such as (I.2) and (I.3).
The theoretical framework for the recovery of sparse signals
from the magnitude of the measurements is built up in [30].
The gradient descent method with thresholding can be used to
solve those models successfully [1], [29]. A simple two-stage
sparse phase retrieval strategy is also studied in [13].

2) Other Algorithms: An alternative model for phase
retrieval is

min
x∈Fd

m∑
i=1

(|�ai, x�|2 − y2
i

)2
. (I.5)

Note that the object function in (I.5) is smooth and one devel-
ops many algorithms for solving it, such as Gauss-Newton
algorithms [7], and trust-region methods [22]. A gradient
descent method is applied to solve (I.5), which provides
the Wirtinger Flow (WF) [2] and Truncated Wirtinger Flow
(TWF) [4] algorithms. It has been proved that both WF and
TWF algorithms linearly converge to the true solution when
the measurement vectors are random Gaussian measurements.
For the case where the measurement vectors are Fourier
measurements, in [11], [12], a gradient descent method is
proposed for solving (I.5).

One convex method to handle phase retrieval problem is
PhaseLift [3] which lifts the quadratic system to recover a
rank-1 positive semi-definite matrix by solving a semi-definite
programming. An alternative convex method is PhaseMax [9]
which recasts this problem as a linear programming by
an anchor vector. In [17], a numerical comparison between
PhaseLift and a gradient method for solving (I.5) is presented.

C. Our Contributions

The aim of this paper is to study the estimation performance
of the nonlinear least squares for phase retrieval. We obtain the
measurement vector y = |Ax0|+η, where A = [a1, . . . , am]�

is the measurement matrix with aj ∈ Rd, x0 ∈ Rd and
η ∈ Rm is a noise vector. We would like to estimate x0

from y.
Firstly, we consider the following nonlinear least squares

model:

min
x∈Rd

�|Ax| − y�2
2 . (I.6)

Though one has already developed many algorithms for find-
ing the solution to (I.6), to our knowledge, there is no result
concerning the reconstruction error of (I.6) so far. One of main
results in this paper is the following theorem which shows
that the reconstruction error of model (I.6) can be reduced
proportionally to �η�2/

√
m and it becomes quite small when

�η�2 is bounded and m is large. Throughout the paper, to state
conveniently, we use A � B to denote A ≤ C0 B for any
A, B ∈ R, where C0 ∈ R+ is an absolute constant and the
value varies with the context. The notion � can be defined
similarly.

Theorem I.1: Suppose that A ∈ Rm×d is a Gaussian ran-
dom matrix whose entries are independent Gaussian random
variables. We assume that m � d. The following holds with
probability at least 1−3 exp(−cm) where c > 0 is an absolute
constant. For any fixed vector x0 ∈ Rd, suppose that x̂ ∈ Rd

is any global solution to (I.6). Then

min {�x̂ − x0�2, �x̂ + x0�2} � �η�2√
m

. (I.7)

The next theorem implies that the reconstruction error in
Theorem I.1 is sharp in the power of m.

Theorem I.2: Let m � d. Assume that x0 ∈ Rd is a fixed
vector. Assume that η ∈ Rm is a fixed vector which satisfies√

2/π · |∑m
i=1 ηi|/m ≥ δ0 and �η�2/

√
m ≤ δ1 for some

constants δ0 > 0 and δ1 > 0. Suppose that A ∈ Rm×d

is a Gaussian random matrix whose entries are independent
Gaussian random variables. Let x̂ be any global solution
to (I.6). Then there exists an �0 > 0 and constants c > 0,
cδ0,x0 > 0 such that the following holds with probability at
least 1 − 6 exp(−c�20 m):

min {�x̂ − x0�2, �x̂ + x0�2} ≥ cδ0,x0 . (I.8)

Here, the constant cδ0,x0 only depends on δ0 and �x0�2.
Remark I.3: According to the proof of Theorem I.2, we can

deduce that

cδ0,x0 = min{δ0/36, �x0�2 sin θ2}, (I.9)

where θ2 := f−1(δ0/(4�x0�2)) > 0 and f(θ) := 2/π ·
(sin θ+(π/2−θ) cos θ)−| cos θ| is a monotonically increasing
function for θ ∈ [0, π/2]. For the case where δ0/(4�x0�2) /∈
{f(θ) : θ ∈ [0, π/2]}, we can choose cδ0,x0 = δ0/36.

Remark I.4: We next explain the reason why the error
bound in Theorem I.1 is sharp in the power of m. To derive a
contradiction, we assume that there exists an α > 0 such that

min {�x̂ − x0�2, �x̂ + x0�2} � �η�2

m1/2+α
for m � d,

(I.10)

holds for any fixed x0 ∈ Rd with high probability. Here,
x̂ ∈ Rd is any solution to (I.6) which depends on x0 and η.
We assume

lim
m→∞

|
m∑

i=1

ηi/m| ≥ δ0 and lim
m→∞ �η�2/

√
m ≤ δ1

where δ0, δ1 > 0. For example, if we take η = (1, . . . , 1)� ∈
Rm, then δ0 = δ1 = 1. For a fixed x0 ∈ Rd, Theorem I.2
implies the following holds with high probability

min {�x̂ − x0�2, �x̂ + x0�2} ≥ cδ0,x0 , for m � d, (I.11)

where cδ0,x0 > 0. However, (I.10) implies that

min {�x̂− x0�2, �x̂ + x0�2} � δ1

mα
→ 0, m → ∞,

which contradicts with (I.11). Hence, (I.10) does not hold.
We next turn to the phase retrieval for sparse signals. Here,

we assume that x0 ∈ Rd is s-sparse, which means that there
are at most s nonzero entries in x0. We first consider the
estimation performance of the following constrained nonlinear
Lasso model

min
x∈Rd

�|Ax| − y�2 s.t. �x�1 ≤ R, (I.12)
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where R is a parameter which specifies a desired sparsity level
of the solution. The following theorem presents the estimation
performance of model (I.12):

Theorem I.5: Suppose that A ∈ Rm×d is a Gaussian ran-
dom matrix whose entries are independent Gaussian random
variables. If m � s log(ed/s), then the following holds with
probability at least 1−3 exp(−cm) where c > 0 is a constant.
For any fixed s-sparse vector x0 ∈ R

d, suppose that x̂ ∈ R
d

is any global solution to (I.12) with parameter R := �x0�1

and y = |Ax0| + η. Then

min {�x̂− x0�2, �x̂ + x0�2} � �η�2√
m

.

The unconstrained Lagrangian version of (I.12) is

min
x∈Rd

�|Ax| − y�2
2 + λ�x�1, (I.13)

where λ > 0 is a parameter which depends on the desired level
of sparsity. The following theorem presents the estimation
performance of model (I.13):

Theorem I.6: Suppose that A ∈ Rm×d is a Gaussian ran-
dom matrix whose entries are independent Gaussian random
variables. If m � s log(ed/s), then the following holds with
probability at least 1 − exp(−cm) − 1/d2 where c > 0 is
a constant. For any fixed s-sparse vector x0 ∈ Rd, suppose
that x̂ ∈ Rd is any global solution to (I.13) with the positive
parameter λ � �η�1 + �η�2

√
log d and y = |Ax0| + η. Then

min {�x̂ − x0�2, �x̂ + x0�2} � λ
√

s

m
+

�η�2√
m

. (I.14)

We can use a similar method in Remark I.4 to show that the
reconstruction error in Theorem I.5 is sharp. In Theorem I.6,
if η satisfies �η�1/�η�2 �

√
m/s then λ

√
s/m+�η�2/

√
m �

�η�2/
√

m. This implies the reconstruction error in Theo-
rem I.6 is tight provided �η�1/�η�2 �

√
m/s. For the case

where η is a general vector, we conjecture that Theorem I.6
still holds provided λ � �η�2

√
log d. Under this conjecture,

we can take λ ≈ �η�2

√
log d and replace (I.14) by

min {�x̂ − x0�2, �x̂ + x0�2} � �η�2√
m

.

Numerical experiments in Example I.9 also support this
conjecture.

D. Comparison to Related Works

1) Least Squares: We first introduce the estimation of
signals from the noisy linear measurements. Suppose that
x0 ∈ Rd is the target signal. Set

y� = Ax0 + η,

where A ∈ Rm×d is the measurement matrix and η ∈ Rm

is a noise vector. We suppose that A is a Gaussian random
matrix with entries ajk ∼ N(0, 1) and we also suppose that
m � d. A popular method for recovering x0 from y� is the
least squares:

min
x∈Rd

�Ax − y��2
2. (I.15)

Then the solution of model (I.15) is x̂� = (A�A)−1A�y�,
which implies that

x̂� − x0 = (A�A)−1A�η.

Thus with probability at least 1 − 4 exp(−cd) one has

�x̂� − x0�2 = �(A�A)−1A�η�2

≤ �(A�A)−1�2�A�η�2

�
√

d

m
�η�2,

where the last inequality follows from the fact that �A�η�2 ≤
3
√

d�η�2 and λmin(A) ≥ O(
√

m) hold with probability
at least 1 − 4 exp(−cd) for any Gaussian random matrix
[24, Theorem 7.3.3]. Then the following holds with high
probability

�x̂� − x0�2 �
√

d�η�2

m
, (I.16)

where x̂� is the solution of (I.15).
For nonlinear least squares with phaseless measurement

y = |Ax0| + η, we consider

min
x∈Rd

�|Ax| − y�2. (I.17)

Theorem I.1 implies that

min {�x̂− x0�2, �x̂ + x0�2} � �η�2√
m

(I.18)

where x̂ is any solution to (I.17). Remark I.4 implies that
the upper bound is sharp. Note that the error order about m
for nonlinear least squares is O(1/

√
m) while one for least

squares is O(1/m). Hence, the result in Theorem I.1 highlights
an essential difference between linear least square model (I.15)
and the nonlinear least square model (I.17).

2) Lasso: If assume that the signal x0 is s-sparse and
y� = Ax0 + η, one turns to the Lasso

min
x∈Rd

�Ax− y��2 s.t. �x�1 ≤ R. (I.19)

If m � s log d, then the solution x̂� of (I.19) satisfies

�x̂� − x0�2 � �η�2

√
s log d/m (I.20)

with high probability (see [24]).
For the nonlinear Lasso, Theorem I.5 shows that any solu-

tion x̂ to min�x�1≤�x0�1 �|Ax| − y� with y = |Ax0| + η
satisfies

min {�x̂ − x0�2, �x̂ + x0�2} � �η�2/
√

m (I.21)

with high probability. Comparing (I.20) with (I.21), we find
that the reconstruction error of Lasso is similar to that
of nonlinear Lasso when m = O(s log d), while Lasso
has a better performance than the nonlinear Lasso provided
m � s log d.
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3) Unconstrained Lasso: We next turn to the unconstrained
Lasso

min
x∈Rd

�Ax − y��2
2 + λ�x�1 (I.22)

where y� = Ax0 + η and x0 is a s-sparse vector. If the
parameter λ � �η�2

√
log d, then x̂� satisfies

�x̂� − x0�2 � λ
√

s

m

with high probability (see [24]) where x̂� is the solution
of (I.22).

For the sparse phase retrieval model

min
x∈Rd

�|Ax| − y�2
2 + λ�x�1 (I.23)

with y = |Ax0| + η, Theorem I.6 shows that

min {�x̂ − x0�2, �x̂ + x0�2} � λ
√

s

m
+

�η�2√
m

(I.24)

where the parameter λ � �η�1 + �η�2

√
log d and x̂ is any

solution to (I.23). Our result requires that the parameter λ in
nonlinear Lasso model is larger than linear case.

4) The Generalized Lasso With Nonlinear Observations:
In [20], Y. Plan and R. Vershynin consider the following
nonlinear observations

yj = fj(�aj , x0�), j = 1, . . . , m

where fj : R → R are independent copies of an unknown ran-
dom or deterministic function f and aj ∈ Rd, j = 1, . . . , m,
are Gaussian random vectors. The K-Lasso model is employed
to recover x0 from yj, j = 1, . . . , m:

min
x∈Rd

�Ax − y�2
2 s.t. x ∈ K, (I.25)

where K ⊂ Rd is some known set. Suppose that x̂ is the
solution to (I.25). Y. Plan and R. Vershynin [20] show that
�x̂ − μ · x0� tends to 0 with m tending to infinity, where
μ = E(f(g)g) with g being a Gaussian random variable.
Unfortunately, applying the result to phase retrieval problem,
it gives that μ = E(|g| · g) = 0 and hence �x̂� tends to 0 with
m tending to infinity where x̂ is the solution to the least square
mode (I.25) with K = R

d and yj = |�aj , x0�|. This means
that the generalized Lasso does not work for phase retrieval.
Hence, one has to employ the nonlinear Lasso (or nonlinear
least squares) for solving phase retrieval. This is also our
motivation for this project.

E. Numerical Experiments

The purpose of numerical experiments is to verify our
results given in Subsection I-C. In our experiments, the mea-
surement vectors a1, . . . , am are independent and identically
generated from Gaussian random distribution and the noise
vector η ∈ Rm is generated from Poisson distribution with
parameter 1, i.e., the entries ηi ∼ Pois(1).

Example I.7: In this example, we show the reconstruc-
tion error O(�η�2/

√
m) presented in Theorem I.1 is sharp.

We choose a standard Gaussian random vector x0 ∈ Rd with
d = 100 as the target signal and adopt the TAF [28] to

Fig. 1. Numerical experiments for verifying the reconstruction error in
Theorem I.1 and Theorem I.5, respectively. (a) The ratio ρm against the
measurement number m for nonlinear least squares. (b) The ratio ρm against
the number of measurement m for constrained nonlinear Lasso.

solve the nonlinear least squares (I.6). We vary m within the
range [2d, 40d]. For each fixed m, we run 50 times trials and
calculate the average ratio ρm:

ρm :=
min {�x̂ − x0�2, �x̂ + x0�2}

�η�2/
√

m
. (I.26)

Figure 1(a) depicts the ρm against the measurement number
m. The numerical results show that ρm tends to be a con-
stant around 0.58 which verifies the bound O(�η�2/

√
m) in

Theorem I.1 is sharp.
Example I.8: The purpose of this numerical experiment is to

verify the tightness of the error bound O(�η�2/
√

m) presented
in Theorem I.5. We take the sparsity level s = 10. The target
sparse vector x0 ∈ Rd is chosen randomly in standard normal
distribution with d = 1000. The support set of x0 is drawn
from the uniform distribution over the set of all subsets of
[1, d] of size s = 10. To solve the constrained nonlinear
Lasso (I.12), we use the initialization method introduced in [1]
to obtain a good guess and then update it by the projection
gradient decent algorithm (see [29]). We vary m within the
range [0.4d, 4d]. For each fixed m, we run 50 times trials and
calculate the average ratio ρm defined in (I.26). The result
is plotted in Figure 1(b). Numerical results show that ρm

tends to be a constant around 0.44 which verifies the bound
O(�η�2/

√
m) presented in Theorem I.5 is sharp.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on February 09,2022 at 02:24:41 UTC from IEEE Xplore.  Restrictions apply. 



HUANG AND XU: ESTIMATION PERFORMANCE OF NONLINEAR LEAST SQUARES FOR PHASE RETRIEVAL 7971

Fig. 2. Numerical experiments for verifying the the conjecture stated after
Theorem I.6. The graph shows a plot of the ratio ρ′m against the number of
measurement m for unconstrained nonlinear Lasso.

Example I.9: The purpose of this numerical experiment is
to present numerical evidences for the conjecture which says
Theorem I.6 still holds for λ � �η�2

√
log d. We vary the

sparsity level s within the range [4, 20]. For each sparsity
level s, the target sparse vector x0 ∈ Rd with d = 1000
is chosen randomly from standard normal distribution and the
number of measurements m = �2s log(ed/s)�. The uncon-
strained nonlinear Lasso (I.13) is solved by combining gradient
decent algorithm and soft thresholding with the regularization
parameter λ = 0.1 ·√m log d ≈ �η�2

√
log d. We run 50 times

trials for each sparsity s and calculate the average ratio ρ�m:

ρ�m :=
min {�x̂− x0�2, �x̂ + x0�2}

λ
√

s/m + �η�2/
√

m
.

The results are depicted in Figure 2. According to the numer-
ical results, we can see that ρ�m tends to be a constant
around 0.55. This verifies the conjecture which is stated after
Theorem I.6.

F. Organization

The paper is organized as follows. In Section II, we intro-
duce some notations and lemmas which are used in this paper.
We provide the proofs of main results in Section III. Some
discussions are given in IV.

II. PRELIMINARIES

The aim of this section is to introduce some definitions and
lemmas which play a key role in our paper.

A. Gaussian Width

For a subset T ⊂ Rd, the Gaussian width is defined as

w(T ) := E sup
x∈T

�g, x� where g ∼ N(0, Id).

The Gaussian width w(T ) is one of the basic geometric
quantities associated with the subset T ⊂ R

d (see [24]).
We now give several examples about Gaussian width. The
first example is Euclidean unit ball Sd−1, where a simple
calculation leads to

w(Sd−1) = O(
√

d).

Another example is the unit �1 ball Bd
1 in Rd. It can be showed

that (see e.g. [24])

w(Bd
1 ) = O(

√
log d).

In this paper, we often use the following set

Kd,s :=
{
x ∈ R

d : �x�2 ≤ 1, �x�1 ≤ √
s
}

,

with the Gaussian width w(Kd,s) = O(
√

s log(ed/s))
(see e.g. [24]).

B. Gaussian Concentration Inequality

Lemma II.1 [24]: Consider a random vector X ∼ N(0, Id)
and a Lipschitz function f : Rd → R with constant �f�Lip:
|f(X) − f(Y )| ≤ �f�Lip · �X − Y �2. Then for every t ≥ 0,
we have

P {|f(X) − Ef(X)| ≥ t} ≤ 2 exp
(
− ct2

�f�Lip

)
.

C. Strong RIP

To study the phaseless compressed sensing, Voroninski
and Xu introduce the definition of strong restricted isometry
property (SRIP) (see [25]).

Definition II.2 [25]: The matrix A ∈ Rm×d satisfies the
Strong Restricted Isometry Property of order s and constants
θ−, θ+ ∈ (0, 2) if the following holds

θ−�x�2
2 ≤ min

I⊂[m],
|I|≥m/2

�AIx�2
2 ≤ max

I⊂[m],
|I|≥m/2

�AIx�2
2 ≤ θ+�x�2

2

(II.1)

for all x ∈ Kd,s. Here, AI denotes the submatrix of A where
only rows with indices in I are kept, [m] := {1, . . . , m} and
|I| denotes the cardinality of I .

The following lemma shows that Gaussian random matrices
satisfy SRIP with high probability for some non-zero universal
constants θ−, θ+ > 0.

Lemma II.3 [25, Theorem 2.1]: Suppose that t > 1 and that
A ∈ Rm×d is a Gaussian random matrix with entries ajk ∼
N(0, 1). Let m = O(ts log(ed/s)) where s ∈ [1, d] ∩ Z and
t ≥ 1 is a constant. Then there exist constants θ−, θ+ with 0 <
θ− < θ+ < 2, independent with t, such that A/

√
m satisfies

SRIP of order t · s and constants θ−, θ+ with probability at
least 1 − exp(−cm), where c > 0 is an absolute constant.

Remark II.4: In [25], the authors just present the proof
of Lemma II.3 for the case where x is s-sparse. Note
that the set Kd,s has covering number N(Kd,s, ε) ≤
exp(Cs log(ed/s)/ε2) [19, Lemma 3.4]. It is easy to extend
the proof in [25] to the case where x ∈ Kd,s.

III. PROOF OF THE MAIN RESULTS

To give the reconstruction errors of our three optimization
models, as we will see next, in each proof it needs to present
a lower bound of infh∈K �AT h�2

2 and control the size of
suph∈K, η∈S�h, A�η�, where T ⊂ {1, . . . , m} and K, S are
some subsets of Rd and Rm, respectively. For the first term,
we use Strong RIP to deduce a lower bound; and for the
other term we combine the Gaussian width with probability
concentration inequality to handle it.
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A. Proof of Theorem I.1

We begin with a simple lemma.
Lemma III.1: Suppose that m ≥ d. Let A ∈ Rm×d be

a Gaussian matrix whose entries are independent Gaussian
random variables. Then the following holds with probability
at least 1 − 2 exp(−cm)

sup
h∈Rd

η∈Rm

�h, A�η� ≤ 3
√

m�h�2�η�2.

Proof: Since A ∈ R
m×d is a Gaussian random

matrix, we have �A�2 ≤ 3
√

m with probability at least
1 − 2 exp(−cm) [24, Theorem 7.3.3]. We obtain that

�h, A�η�≤�h�2�A�η�2≤�h�2�A��2�η�2≤3
√

m�h�2�η�2

holds with probability at least 1 − 2 exp(−cm), where �·�2

denotes the operator norm of the matrix. We arrive at the
conclusion.

Proof of Theorem I.1: Set h− := x̂ − x0 and h+ :=
x̂ + x0. Since x̂ is the solution of (I.6), we have

�|Ax̂| − y�2
2 ≤ �|Ax0| − y�2

2 . (III.1)

For any index set T ⊂ {1, . . . , m}, we let AT := [aj :
j ∈ T ]� be the submatrix of A. Denote

T1 := {j : sign(�aj , x̂�) = 1, sign(�aj , x0�) = 1}
T2 := {j : sign(�aj , x̂�) = −1, sign(�aj , x0�) = −1}
T3 := {j : sign(�aj , x̂�) = 1, sign(�aj , x0�) = −1}
T4 := {j : sign(�aj , x̂�) = −1, sign(�aj , x0�) = 1} .

Without loss of generality, we assume that #(T1 ∪ T2) =
βm ≥ m/2 (otherwise, we can assume that #(T3 ∪ T4) ≥
m/2 ). Then we have

�|Ax̂| − y�2
2 ≥ �AT1h

− − ηT1�2
2 + �AT2h

− + ηT2�2
2.

The (III.1) implies that

�AT1h
− − ηT1�2

2 + �AT2h
− + ηT2�2

2 ≤ �η�2

and hence

�AT12h
−�2

2 ≤ 2�h−, A�
T1

ηT1 − A�
T2

ηT2� + �ηT c
12
�2 (III.2)

where T12 := T1 ∪ T2. Choosing t = 2 and s := d/2 in
Lemma II.3, we can obtain that

�AT12h
−�2

2 ≥ c0m�h−�2
2 (III.3)

holds with probability at least 1 − exp(−cm). On the
other hand, Lemma III.1 states that with probability at least
1 − 2 exp(−cm) the following holds:

�h−, A�
T1

ηT1 − A�
T2

ηT2� ≤ 6
√

m�h−�2�η�2. (III.4)

Putting (III.3) and (III.4) into (III.2), we obtain

c0m�h−�2
2 ≤ 12

√
m�h−�2�η�2 + �ηT c

12
�2
2 (III.5)

with probability at least 1 − 3 exp(−cm), which implies that

�h−�2 � �η�2√
m

.

For the case where #(T3 ∪ T4) ≥ m/2, we can obtain that

�h+�2 � �η�2√
m

by a similar method to above.

B. Proof of Theorem I.2

To this end, we present the following lemmas.
Lemma III.2: Suppose that x̂ is any global solution of

model (I.6). Then x̂ satisfies the following fixed-point equa-
tion:

x̂ = (A�A)−1A�(y � s(Ax̂)), (III.6)

where � denotes the Hadamard product and s(Ax̂) :=(
	a1,�x

|	a1,�x
| , . . . ,

	am,�x

|	am,�x
|

)
for any x̂ ∈ R

d. Here, 	aj ,�x

|	aj,�x
| = 1 is

adopted if �aj , x̂� = 0.
Proof: Let

L(x) := �|Ax| − y�2
2.

Consider the smooth function

G(x, u) := �Ax − u � y�2
2

with x ∈ Rd and u ∈ U := {u = (u1, . . . , um) ∈
R

m : |ui| = 1, i = 1, . . . , m}. Recall that L(x) has a
global minimum at x̂. Then G(x, u) has a global minimum at
(x̂, s(Ax̂)). Indeed, if there exists (x̃, ũ) such that G(x̃, ũ) <
G(x̂, s(Ax̂)), then

L(x̃) = �|Ax̃| − y�2
2 ≤ �Ax̃ − ũ � y�2

2

= G(x̃, ũ)
< G(x̂, s(Ax̂)) = L(x̂).

This contradicts the assumption that L(x) has a global mini-
mum at x̂. Thus we have

G(x̂, s(Ax̂)) ≤ G(x, s(Ax̂)) for any x ∈ R
d,

i.e., the function G(x, s(Ax̂)) has a global minimum at x̂.
Here, we consider G(x, s(Ax̂)) as a function about x since
s(Ax̂) is a fixed vector. Note that G(x, s(Ax̂)) is differentiable
and

∇G(x, s(Ax̂)) = 2A�(Ax − y � s(Ax̂)).

And G(x, s(Ax̂)) has a global minimum at x̂, we have

∇G(x̂, s(Ax̂)) = 2A�(Ax̂ − y � s(Ax̂)) = 0

which implies the conclusion.
Lemma III.3: Let m � d. Suppose that A ∈ Rm×d is

a Gaussian random matrix whose entries are independent
Gaussian random variables. For a fixed vector x0 ∈ Rd and a
fixed noise vector η ∈ Rm, let x̂ be the solution of model (I.6).
For any fixed � > 0, set

β� :=
∣∣∣�x0�2·f(θ)+

√
2/π·

m∑
i=1

ηi/m
∣∣∣−(�x0�2+�η�2/

√
m)�,

where f(θ) := 2/π · (sin θ + (π/2− θ) cos θ)− | cos θ| and θ
is the angle between x̂ and x0. Then the following holds with
probability at least 1 − 6 exp(−c�2 m):

min {�x̂ − x0�2, �x̂ + x0�2} ≥ β�/9.
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Proof: According to Lemma III.2, we have

x̂ = (A�A)−1A�(y � s(Ax̂)). (III.7)

Without loss of generality, we can assume �x̂ − x0�2 ≤
�x̂ + x0�2, which implies that 0 ≤ θ ≤ π/2. From (III.7),
we have

x̂ − x0 = (A�A)−1A�(y � s(Ax̂) − Ax0),

which implies that

�x̂ − x0�2 ≥ σmin((A�A)−1)�A�(y � s(Ax̂) − Ax0)�2

≥ 1
9m

�A�(y � s(Ax̂) − Ax0)�2.

Here, we use the fact that �A�2 ≤ 3
√

m holds with probability
at least 1−2 exp(−cm) [24, Theorem 7.3.3] since A ∈ Rm×d

is a Gaussian random matrix.
Without loss of generality, we can assume x̂ �= 0. Indeed,

(III.7) implies A�y = 0 provided x̂ = 0, which gives that
x0 = 0 and η = 0. Thus our conclusion holds. By the
unitary invariance of Gaussian random vectors, we can take
x̂ = �x̂�2e1 and x0 = �x0�2(cos θ · e1 + sin θ · e2), where θ
is the angle between x̂ and x0. Thus,

�x̂ − x0�2 ≥ 1
9m

�A�(y � s(Ae1) − Ax0)�2 =
1

9m
�z�2,

where z := (z1, . . . , zd)� := A�(y � s(Ae1) − Ax0). Note
that the first entry of z is

z1 =
m∑

i=1

(|ai,1|(|a�
i x0| + ηi) − ai,1 · a�

i x0

)
.

This implies that

�x̂− x0�2 ≥|z1|
9m

=

∣∣∣∣∣�x0�2 · 1
9m

m∑
i=1

∣∣ai,1(ai,1 cos θ + ai,2 sin θ)
∣∣

− �x0�2 · 1
9m

m∑
i=1

ai,1(ai,1 cos θ + ai,2 sin θ)

+
1

9m

m∑
i=1

ηi|ai,1|
∣∣∣∣∣

=

∣∣∣∣∣�x0�2

9m

m∑
i=1

(|ξi| − ξi) +
1

9m

m∑
i=1

ηi|ai,1|
∣∣∣∣∣ ,
(III.8)

where ξi := ai,1(ai,1 cos θ + ai,2 sin θ). It is clear that ξi is a
subexponential random variable with Eξi = cos θ. We claim
that E|ξi| = 2/π·(sin θ+(π/2−θ) cosθ). Then the Bernstein’s
inequality implies that, for any fixed � > 0,∣∣∣∣∣ 1

m

m∑
i=1

(|ξi| − ξi) − 2
π
· (sin θ + (

π

2
− θ) cos θ) + cos θ

∣∣∣∣∣ ≤ �

(III.9)

holds with probability at least 1 − 2 exp(−c�2 m). We next

consider 1
m

∑m
i=1 ηi|ai,1|. Note that E|ai,1| =

√
2/π. Then

by Hoeffding’s inequality we can obtain that∣∣∣∣∣ 1
m

m∑
i=1

ηi|ai,1| −
√

2
π
· 1
m

m∑
i=1

ηi

∣∣∣∣∣ ≤ �η�2√
m

� (III.10)

holds with probability at least 1 − 2 exp(−c�2 m) for any
� > 0. Substituting (III.9) and (III.10) into (III.8), we obtain
that

�x̂− x0�2 ≥ 1
9
·
(∣∣∣�x0�2f(θ) +

√
2
π
· 1
m

m∑
i=1

ηi

∣∣∣
−
(
�x0�2 +

�η�2√
m

)
�

)
holds with probability at least 1 − 6 exp(−c�2 m). Thus we
arrive at the conclusion.

It remains to argue that E|ξi| = 2/π·(sin θ+(π/2−θ) cosθ).
By spherical coordinates integral,

E|ξi| = E
∣∣ai,1(ai,1 cos θ + ai,2 sin θ)

∣∣
=

1
2π

∫ 2π

0

∫ ∞

0

r3 e−r2/2| cosφ cos(θ − φ)|drdφ

=
1
2π

∫ 2π

0

| cos θ + cos(2φ − θ)|dφ

=
1
π

∫ π

0

| cos θ + cosφ|dφ

=
2
π

(sin θ + (π/2 − θ) cos θ)

where we use the identities 2 cosφ cos(θ − φ) = cos θ +
cos(2φ − θ) in second line.

Proof of Theorem I.2: From Lemma III.3, it is easy to
prove that (I.8) holds for x0 = 0. Then it suffices to prove the
theorem for x0 �= 0. Since �η�2/

√
m ≤ δ1 with δ1 ≥ 0, there

exists an �0 > 0 so that

(�x0�2 + �η�2/
√

m)�0 ≤ δ0/2.

Set

η :=
√

2/π ·
m∑

i=1

ηi/m,

and

f(θ) := 2/π · (sin θ +(π/2− θ) cos θ)− | cos θ|, 0 ≤ θ ≤ π.

Note that f(θ) is a monotonically increasing function for
θ ∈ [0, π/2].

Choosing � = �0 in Lemma III.3, with probability at least
1 − 6 exp(−c�20 m), we have

min {�x̂−x0�2, �x̂+x0�2}≥
(∣∣�x0�2 ·f(θ0)+η

∣∣−δ0/2
)
/9,

(III.11)

where θ0 is the angle between x̂ and x0. Without loss of
generality, we can assume 0 ≤ θ0 ≤ π/2 and hence f(θ0) ≥
f(0) = 0.

Noting |η| ≥ δ0, we divide the rest of the proof into three
cases.
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Case 1: η ≥ δ0.
In this case, (III.11) implies that

min {�x̂ − x0�2, �x̂ + x0�2} ≥ (η − δ0/2
)
/9 ≥ δ0/18

holds with probability at least 1 − 6 exp(−c�20 m).
Case 2: η ≤ −δ0 and |η| ≤ �x0�2 · f(θ0).
In this case, we have f(θ0) ≥ δ0/�x0�2. Since the

function f(θ) is monotonicity, we have θ0 ≥ θ1 := f−1

(δ0/�x0�2) > 0, which implies that

min {�x̂ − x0�2, �x̂ + x0�2} ≥ �x0�2 sin θ1.

Case 3: η ≤ −δ0 and |η| > �x0�2 · f(θ0).
We claim that there exists a constant cδ0,x0 such that the

following holds with probability at least 1 − 6 exp(−c�20 m)

min {�x̂ − x0�2, �x̂ + x0�2} ≥ cδ0,x0 (III.12)

where cδ0,x0 only depends on δ0 and �x0�2. Indeed, if
|η| − �x0�2f(θ0) ≥ 3/4 · |η|, then (III.11) implies

min {�x̂ − x0�2, �x̂ + x0�2}
≥ (|η| − �x0�2f(θ0) − δ0/2

)
/9

≥ δ0/36.

If |η| − �x0�2f(θ0) < 3/4 · |η|, then f(θ0) ≥ δ0/(4�x0�2).
It can also give that

min {�x̂ − x0�2, �x̂ + x0�2} ≥ �x0�2 · sin θ2,

where θ2 := f−1(δ0/(4�x0�2)) > 0. Choosing cδ0,x0 :=
min{δ0/36, �x0�2 sin θ2}, we arrive at the conclusion.

C. Proof of Theorem I.5

We first extend Lemma III.1 to sparse case.
Lemma III.4: For any fixed s > 0, let m � s log(ed/s).

Suppose that A ∈ Rm×d is a Gaussian matrix whose entries
are independent Gaussian random variables. Set

Kd,s :=
{
x ∈ R

d : �x�2 ≤ 1, �x�1 ≤ √
s
}

.

Then for any fixed η ∈ Rm, the following holds with
probability at least 1 − 2 exp(−cm)

sup
h∈Kd,s

T⊂{1,...,m}

�h, A�ηT � �
√

m · �η�2 · �h�2, (III.13)

where ηT denotes the vector generated by η with entries in T
are themselves and others are zeros.

Proof: For any fixed T ⊂ {1, . . . , m}, we have

E sup
h∈Kd,s

�h, A�ηT � = �ηT �2 · w(Kd,s)

≤ C
√

s log(ed/s)�η�2

≤ C
√

m�η�2,

where the first inequality follows from the fact of the Gaussian
width w(Kd,s) ≤ C

√
s log(ed/s) and the second inequality

follows from m ≥ c0s log(ed/s). We next use Lemma II.1 to
give a tail bound for suph∈Kd,s

�h, A�ηT �. To this end, we set

f(A) := sup
h∈Kd,s

�h, A�ηT �.

We next show that f(A) is a Lipschitz function on R
m×d

and its Lipschitz constant is �η�2. Indeed, for any matrices
A1, A2 ∈ Rm×d, it holds that∣∣∣ sup

h∈Kd,s

�h, A�
1 ηT � − sup

h∈Kd,s

�h, A�
2 ηT �

∣∣∣
≤

∣∣∣ sup
h∈Kd,s

�(A1 − A2)h, ηT �
∣∣∣

≤ �η�2�A1 − A2�F .

Then Lemma II.1 implies that

P

{
sup

h∈Kd,s

�h, A�ηT � ≥ E sup
h∈Kd,s

�h, A�ηT � + t

}

≤ 2 exp
(
− ct2

�η�2
2

)
. (III.14)

Suppose that C1 > 0 is a constant satisfying C2
1 · c > 1.

Choosing t = C1
√

m�η�2 in (III.14), we obtain that the
following holds with probability at least 1−2 exp(−c ·C2

1 ·m)

sup
h∈Kd,s

�h, A�ηT � ≤ C0

√
m�η�2

for any fixed T ⊂ {1, . . . , m}.
Finally, note that the number of all subset T ⊂ {1, . . . , m}

is 2m. Taking a union bound over all the sets gives

sup
h∈Kd,s

T⊂{1,...,m}

�h, A�ηT � ≤ C0

√
m�η�2

with probability at least 1 − 2 exp(−c̃m). Here, we use the
fact of C2

1 · c > 1. We arrive at the conclusion.
Proof of Theorem I.5: Set h− := x̂−x0, h+ := x̂+ x0

and set

T1 := {j : sign(�aj , x̂�) = 1, sign(�aj , x0�) = 1}
T2 := {j : sign(�aj , x̂�) = −1, sign(�aj , x0�) = −1}
T3 := {j : sign(�aj , x̂�) = 1, sign(�aj , x0�) = −1}
T4 := {j : sign(�aj , x̂�) = −1, sign(�aj , x0�) = 1} .

Without loss of generality, we can assume that #(T1∪T2) =
βm ≥ m/2. Using an argument similar to one for (III.2),
we obtain that

�AT12h
−�2

2 ≤ 2�h−, A�
T1

ηT1 − A�
T2

ηT2� + �ηT c
12
�2. (III.15)

To this end, we first need to show �h−�1 ≤ 2
√

s�h−�2.
Indeed, let S := supp(x) and note that

�x̂�1 = �x0 + h−�1 = �x0 + h−
S �1 + �h−

Sc�1

≥ �x0�1 − �h−
S �1 + �h−

Sc�1.

Here h−
S denotes the restriction of the vector h− onto the

set of coordinates S. Then the constrain condition �x̂�1 ≤
R := �x0�1 implies that �h−

Sc�1 ≤ �h−
S �1. Using Hölder

inequality, we obtain that

�h−�1 = �h−
S �1 + �h−

Sc�1 ≤ 2�h−
S �1 ≤ 2

√
s�h−�2.

We next give a lower bound for the left hand of inequal-
ity (III.15). Set

K :=
{
h ∈ R

d : �h�2 ≤ 1, �h�1 ≤ 2
√

s
}

.
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Note that h−/�h−�2 ∈ K . Since A/
√

m satisfies strong RIP
(see Lemma II.3), we obtain that

�AT12h
−�2

2 ≥ c0m�h−�2
2 (III.16)

holds with probability at least 1 − exp(−cm), provided
m � s log(ed/s).

On the other hand, Lemma III.4 implies that

�h−, A�
T1

ηT1 − A�
T2

ηT2� ≤ 2C
√

m�η�2�h−�2 (III.17)

holds with probability at least 1−2 exp(−cm). Putting (III.17)
and (III.16) into (III.15), we obtain that

c0m�h−�2
2 ≤ 4C

√
m�η�2�h−�2 + �ηT c

12
�2 (III.18)

holds with probability at least 1 − 3 exp(−cm). The (III.18)
implies that

�h−�2 � �η�2√
m

.

Similarly, if #(T3 ∪ T4) ≥ m/2, we can obtain that

�h+�2 � �η�2√
m

.

D. Proof of Theorem I.6

To this end, we introduce the following lemma.
Lemma III.5: Let A ∈ R

m×d be a Gaussian matrix
whose entries are independent Gaussian random variables and
η ∈ Rm be a fixed vector. Then the following holds with
probability at least 1 − 1/d2

sup
h∈Rd

T⊂{1,...,m}

�h, A�ηT � � (�η�1 + �η�2

√
log d)�h�1, (III.19)

where ηT denotes the vector generated by η with entries in T
are themselves and others are zeros.

Proof: By applying Hölder’s inequality with �1 and �∞
norms, we have

�h, A�ηT � ≤ �A�ηT �∞ · �h�1.

Thus it is sufficient to present an upper bound of
supT⊂{1,...,m} �A�ηT �∞. We use ãj ∈ R

m, j = 1, . . . , d,
to denote the column vectors of A. Then for any fixed index
j and t > 0, we have

P

(
sup

T⊂{1,...,m}
|ã�

j ηT | > t

)
≤ P

(
m∑

i=1

|ηi||ãj,i| > t

)
.

A simple calculation shows that E|ηi||ãj,i| =
√

2/π|ηi|.
By Hoeffding’s inequality, we obtain that

P

(
m∑

i=1

|ηi||ãj,i| > C
(
�η�1 + �η�2

√
log d

))
≤ 1

d3

(III.20)

holds for some constant C > 0. Taking a union bound over
all indexes j ∈ {1, . . . , d}, (III.20) implies

sup
T⊂{1,...,m}

�A�ηT �∞ � �η�1 + �η�2

√
log d

with probability at least 1 − 1/d2. Thus, we arrive at the
conclusion.

Proof of Theorem I.6: Set h− := x̂ − x0 and h+ :=
x̂ + x0. Without loss of generality, we assume that �h−�1 ≤
�h+�1. Since x̂ is the solution of (I.13), we have

�|Ax̂| − y�2 + λ�x̂�1 ≤ �|Ax0| − y�2 + λ�x0�1

= �η�2
2 + λ�x0�1. (III.21)

For any index set T ⊂ {1, . . . , m}, we set AT := [aj :
j ∈ T ]� which is a submatrix of A. Set

T1 := {j : sign(�aj , x̂�) = 1, sign(�aj , x0�) = 1}
T2 := {j : sign(�aj , x̂�) = −1, sign(�aj , x0�) = −1}
T3 := {j : sign(�aj , x̂�) = 1, sign(�aj , x0�) = −1}
T4 := {j : sign(�aj , x̂�) = −1, sign(�aj , x0�) = 1} .

Then a simple calculation leads to

�|Ax̂| − y�2
2 = �AT1h

− − ηT1�2
2 + �AT2h

− + ηT2�2
2

+�AT3h
+ − ηT3�2

2 + �AT4h
+ + ηT4�2

2.

(III.22)

Substituting (III.22) into (III.21), we obtain that

�AT12h
−�2

2 + �AT34h
+�2

2 ≤ 2�h−, A�
T1

ηT1 − A�
T2

ηT2�
+2�h+, A�

T3
ηT3 − A�

T4
ηT4�

+λ(�x0�1 − �h+ − x0�1),
(III.23)

where T12 := T1 ∪ T2 and T34 := T3 ∪ T4. We claim that
�h−�1 ≤ 4

√
s�h−�2 and �h+�1 ≤ 4

√
s�h+�2 hold with

high probability. Indeed, let S := supp(x0) ⊂ {1, . . . , d}.
Then

�h+ − x0�1 = �h+
S − x0�1 + �h+

Sc�1

≥ �x0�1 − �h+
S �1 + �h+

Sc�1, (III.24)

where the inequality follows from triangle inequality. Accord-
ing to Lemma III.5, we obtain that

�h−, A�
T1

ηT1 − A�
T2

ηT2� ≤
λ

8
�h−�1 (III.25)

and
�h+, A�

T3
ηT3 − A�

T4
ηT4� ≤

λ

8
�h+�1 (III.26)

hold with probability at least 1 − 1/d2, where λ � �η�1 +
�η�2

√
log d. Putting (III.24), (III.25) and (III.26) into (III.23)

and using the fact �h−�1 ≤ �h+�1, we can obtain that

�AT12h
−�2

2+�AT34h
+�2

2 ≤ λ

2
�h+�1 + λ(�h+

S �1 − �h+
Sc�1)

(III.27)

holds with probability at least 1 − 1/d2. The (III.27) implies
that

λ

2
�h+�1 + λ(�h+

S �1 − �h+
Sc�1) ≥ 0,

which gives �h+
Sc�1 ≤ 3�h+

S �1 and hence �h+�1 ≤ 4�h+
S �1.

By the Hölder’s inequality, we obtain that

�h+�1 ≤ 4
√

s�h+�2.
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On the other hand, note that

�h+
S �1 = �x̂S + x0�1, �h−

S �1 = �x̂S − x0�1

and
�h+

Sc�1 = �h−
Sc�1.

Combining with �h−�1 ≤ �h+�1, we can obtain that
�h−�1 ≤ 4

√
s�h−�2.

We next present an upper bound of �h−�2. Without loss of
generality, we assume that #T12 = βm ≥ m/2. The (III.22)
implies that

�|Ax̂| − y�2
2 ≥ �AT1h

− − ηT1�2
2 + �AT2h

− + ηT2�2
2.

(III.28)

Substituting (III.28) into (III.21) we obtain that

�AT12h
−�2

2 ≤ 2�h−, A�
T1

ηT1 − A�
T2

ηT2�
+ λ(�x0�1 − �h− + x0�1) + �ηT c

12
�2

≤ 2�h−, A�
T1

ηT1 − A�
T2

ηT2�
+ λ(�h−

S �1 − �h−
Sc�1) + �ηT c

12
�2. (III.29)

Here, we use

�h− + x0�1 = �h−
S + x0�1 + �h−

Sc�1

≥ �x0�1 − �h−
S �1 + �h−

Sc�1.

We consider the left side of (III.29). Recall that �h−�1 ≤
4
√

s�h−�2. Then

�AT12h
−�2

2 ≥ c0m�h−�2
2 (III.30)

with probability at least 1 − exp(−cm), provided m �
s log(ed/s) (see Remark II.4). For the right hand of (III.29),
we use (III.25) and (III.26) to obtain that

�AT12h
−�2

2 ≤ λ

4
�h−�1 + λ(�h−

S �1 − �h−
Sc�1) + �ηT c

12
�2

≤ 5λ

4
�h−

S �1 + �ηT c
12
�2

≤ 5λ
√

s

4
�h−�2 + �ηT c

12
�2 (III.31)

holds with probability at least 1 − 1/d2. Combining (III.30)
and (III.31), we have

c0m�h−�2
2 ≤ 5λ

√
s

4
�h−�2 + �ηT c

12
�2

with probability at least 1−exp(−cm)−1/d2. By solving the
above inequality, we arrive at the conclusion

�h−�2 � λ
√

s

m
+

�η�2√
m

.

IV. DISCUSSION

We have analyzed the estimation performance of the non-
linear least squares for phase retrieval. We show that the
reconstruction error of the nonlinear least square model is
O(�η�2/

√
m) and we also prove that this recovery bound

is optimal in the power of m. For sparse phase retrieval,
we obtain similar results for the nonlinear Lasso. It is of
interest to extend the results in this paper to complex signals.

Moreover, assume that yi = f(|�ai, x0�|) + ηi, i = 1, . . . , m,
where f : R → R is a continuous function. It is interesting to
consider the recovery error of the model minx �|Ax| − y�2

under this setting, which is the subject of our future
work.
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