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Abstract. In this paper, we study the restricted isometry property
of partial random circulant matrices. For a bounded subgaussian
generator with independent entries, we prove that the partial
random circulant matrices satisfy s-order RIP with high proba-
bility if one chooses m ≳ s log2 s log n rows randomly where n
is the vector length. This improves the previously known bound
m ≳ s log2 s log2 n.

Key words and phrases : Restricted isometry property, Partial
random circulant matrices, Subgaussian random vectors

2010 AMS Mathematics Subject Classification—Primary 15B52,
15B05, Secondary 60G15, 60F10

1. Introduction

1.1. Compressed sensing. The aim of compressed sensing [6, 9, 13, 22] is to
recover s-sparse signals x ∈ Cn from the linear measurements y = Ax and the
compressed sensing matrix A ∈ Cm×n with m < n. Here, we say x ∈ Cn is
s-sparse if ∥x∥0 ≤ s where ∥x∥0 denotes the number of nonzero entries of x.

*Zhiqiang Xu was supported by NSFC grant (91630203, 11688101), Beijing Natural
Science Foundation (Z180002).



2 M. HUANG, Y. PANG AND Z. XU

A naive approach for reconstructing x is to solve the following ℓ0-minimization
problem

(P0) min
z

∥z∥0 subject to Az = y.

However, the ℓ0-minimization problem is NP-hard [20] which is not tractable.
A natural approach is to relax ℓ0-minimization to ℓ1-minimization [6, 8, 9, 13],
i.e.,

(P1) min
z

∥z∥1 subject to Az = y.

The (P1) is a convex optimization problem which can be solved efficiently. To
guarantee the reconstruction of the sparse signals x by (P1), it suffices to require
the matrix A satisfying restricted isometry property (RIP). For a matrix A ∈
Rm×n and an integer s ∈ [1, n), we say A satisfies s-order RIP with constant
δs ∈ [0, 1) if

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22 (1)

holds for all s-sparse signals x. It has been proved that if the matrix A satisfies

t · s-order RIP with δts <
√

1− 1
t for t > 4/3, then every s-sparse vector x

can be reconstructed by solving (P1) [7, 5]. Moreover, RIP is also employed to
study the performance of greedy algorithms for the recovery of sparse signals,
such as OMP [26], OMMP [25], CoSaMP [11, 21], iterative hard thresholding
[3] and hard thresholding pursuit [10]. Hence, one is interested in construct-
ing RIP matrices A ∈ Cm×n with m being as small as possible. A popular
method for constructing RIP matrices is to use random matrices. For exam-
ple, Gaussian random matrix 1√

m
A ∈ Rm×n satisfies s-order RIP with high

probability provided that m ≥ Cs log(n/s), where the entries of A are indepen-
dent standard normal random variables. From the Gelfand widths, the lower
bound Cs log(n/s) is optimal up to a constant [12]. Other random matrices
which can achieve this bound include Bernoulli matrices and subgaussian ma-
trices [18, 22]. In practical applications, one prefers structured random matrices
since they can make the recovery algorithms more efficient. An important ex-
ample of structured random matrices are partial Fourier matrices whose rows
are selected randomly from the discrete Fourier matrix. It has been shown that
partial Fourier matrices satisfy s-order RIP with high probability provided that
m ≥ Cs log2 s log n, (see [15, 22, 24, 4]).

The aim of this paper is to study the RIP of the partial random circulant
matrices. Compared to Bernoulli or Gaussian matrices, the partial random
circulant matrices have the advantage that they reduce the generation of only
n independent random variables instead of n2. More importantly, they admit
fast matrix-vector multiplication and arise naturally in certain applications such
as in radar, aperture imaging [14, 23] as well as MR imaging [17]. Hence, they
attract much attention.
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1.2. Related work. Assume that ξ = (ξ1, . . . , ξn) ∈ Cn. We define the circu-
lant matrix generated by ξ as

Aξ :=


ξ1 ξn · · · ξ2
ξ2 ξ1 · · · ξ3
...

...
. . .

...
ξn ξn−1 · · · ξ1

 ∈ Cn×n.

For a multiset Ω in {1, . . . , n} with cardinality m, let PΩ : Cn → Cm denote the
projection operator that restricts a vector x ∈ Cn to its entries in Ω. Then the
corresponding partial circulant matrix generated by ξ is defined as

Φξ =
1√
m
PΩAξ ∈ Cm×n.

We next introduce another family of structured random matrices. For ξ =
(ξ1, . . . , ξ2n−1) ∈ C2n−1, the Toeplitz matrix Tξ is defined as

Tξ =


ξn ξn−1 · · · ξ1
ξn+1 ξn · · · ξ2
...

...
. . .

...
ξ2n−1 ξ2n−2 · · · ξn


and the Hankel matrix is defined as Hξ = TξJn where Jn = [en, . . . , e1] and
ej , j = 1, . . . , n are the standard orthogonal vectors. For a multiset Ω of
{1, . . . , n} with cardinality m, the corresponding partial Toeplitz matrix

Ψξ =
1√
m
PΩTξ ∈ Cm×n. (2)

Similarly, we can define the partial Hankel matrices. A simple observation is
that 1√

m
PΩTξ satisfies s-order RIP with the constant δs if and only if 1√

m
PΩHξ

satisfies the same property. As we will see later, a Toeplitz matrix can be
embedded in a circulant matrix of twice the dimension. Hence, many RIP results
for partial random circulant matrices can be extended to the partial random
Toeplitz matrices as well as partial random Hankel matrices.

In [23], under the setup in which both Ω as well as the generating vector
ξ are chosen at random, Romberg proves that m ≳ s log6 n measurements are
sufficient to guarantee Φξ =

1√
m
PΩAξ ∈ Cm×n satisfying RIP. For an arbitrary

fixed selection of Ω ⊂ {1, . . . , n}, the first theoretical results are established in
[2] with showing that m × n partial random circulant matrices satisfy s-order
RIP with high probability provided m ≳ s3 log n. This is then improved by Ba-
jwa et al. [1, 14] to m ≳ s2 log n for general matrices whose entries were drawn
from bounded or Gaussian distribution. Later, Rauhut, Romberg and Tropp
prove that m ≳ s3/2 log3/2 n measurements are enough. And the result is then
improved by Krahmer, Mendelson and Rauhut [16] to O(s log2 s log2 n). Re-
cently, Mendelson, Rauhut and Ward [19] prove that O(s log2 s log(log s) log n)
measurements for partial random circulant matrix with random sampling set Ω
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and Gaussian random generator are sufficient to recover all s-sparse vectors with
high probability via ℓ1-minimization, but it does not establish any type of RIP.

1.3. Main results. In this paper, we study the RIP of the partial random
circulant matrices with bounded or Gaussian entries, where the subsampling
locations Ω are selected at random from {1, . . . , n}. We show that, if m ≳
s log2 s log n then Φξ = 1√

m
PΩAξ satisfies s-order RIP with high probability

where ξ is a bounded random vector. This improves upon the best previously
known bound O(s log2 s log2 n) [16]. Some suitable bounded random vectors
ξ include uniform distribution ξi ∼ U(−

√
3,
√
3) and Rademacher vector with

P(ξi = ±1) = 1/2.

Theorem 1.1. Let ξ = (ξ1, . . . , ξn) ∈ Cn be a random vector whose entries are
i.i.d. realizations of bounded zero-mean random variables satisfying Eξ2j = 1

and |ξ|j ≤ c for some c ≥ 1. Suppose that δ > 0 is a sufficient small constant

and m ≳ log2(1/δ) · δ−2s log2(s/δ) log n. Let Ω be a multiset of m uniform and
independent random elements of {1, . . . , n} and Φξ = 1√

m
PΩAξ ∈ Cm×n be a

partial random circulant matrix generated by ξ and Ω. If s ≲ n/(log4 n), then
the matrix Φξ satisfies the restricted isometry property with order s and constant

δs ≤ δ with probability at least 1− 2−C logn log(s/δ) − n− logn log2 s.

In the practical applications, one usually requires that s << n. Hence, the
assumption of s ≲ n/ log4 n in Theorem 1.1 is enough for the practical applica-
tions. The idea for proving Theorem 1.1 is to use result from [15] (see Theorem
2.4 in Section 2), which shows the connection between 1

n∥Mx∥22 and 1
m∥PΩMx∥22

for any matrix M ∈ Cn×n (see (3) for detail). In [15], Haviv and Regev consider
the case where M is a DFT matrix for which 1

n∥Mx∥22 = ∥x∥22. A particu-
lar case of Theorem 2.2 from [16] shows that the circulant matrix Aξ satisfies
1
n∥Aξx∥2 ≈ ∥x∥2 provided s ≲ n/ log4 n (see Corollary 2.3). Combining them,
we can arrive at Theorem 1.1. The proof just combines the known results, but
Theorem 1.1 definitely goes far beyond the current state-of-the-art.

Remark 1.2. We consider the case with removing the assumption of ξj being
a bounded random variable. Assume that ξ ∈ Cn is a random vector with in-
dependent, mean 0 and variance 1, L-subgaussian entries. We can obtain that
P
(
|ξj | > L

√
2 log n

)
≤ 2/n2 for any ξj. Then

P
(
max

j
|ξj | ≤ L

√
2 log n

)
≥ 1− 2/n,

which implies that |ξj | ≤ L
√
2 log n for all j = 1, . . . , n with probability at least

1− 2/n. Since the bound L
√
2 log n is not a constant, it leads to slightly larger

samples m ≳ s log2(s log n) log2 n for the partial random circulant matrix Φξ

to satisfy s-order RIP. Nevertheless, the result can match the best bound m ≳
s log2(s) log2(n) which is obtained in [16] provided s ≥ log n.
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Remark 1.3. Note that a Toeplitz matrix can be embedded in a circulant ma-
trix of twice the dimension. Then we can show that Toeplitz matrix satisfies
1
n∥Tξx∥2 ≈ ∥x∥2 provided s ≲ n/ log4 n. Hence, our result can be extended to
the partial random Toeplitz matrices.

2. Preliminaries

We first introduce the definition of L-subgaussian random vectors which in-
clude the Rademacher vectors as well as the standard Gaussian vectors as special
cases. To state conveniently, we use Sn−1 to denote the unit sphere in Cn.

Definition 2.1 (L-subgaussian). A mean 0 random vector X ∈ Cn is called
isotropic if for every θ ∈ Sn−1, E|⟨X, θ⟩| = 1. A random vector X is called
L-subgaussian if it is isotropic and P(|⟨X, θ⟩| ≥ t) ≤ 2 exp(−t2/2L2) for every
θ ∈ Sn−1 and any t ≥ 0.

We introduce some known results which are useful in our analysis.

Theorem 2.2. ([16, Theorem 4.1]) For any fixed subset Ω ⊂ {1, . . . , n} and a
random vector ξ ∈ Cn with independent, mean 0 and variance 1, L-subgaussian
entries. Let Φξ = 1√

m
PΩAξ ∈ Rm×n be a partial random circulant matrix

generated by ξ and Ω. If

m ≥ cδ−2s log2 s log2 n,

then with probability at least 1−n− logn log2 s, the matrix Φξ satisfies the restricted
isometry property with constant δs ≤ δ. The constant c > 0 is universal.

If we take Ω = {1, . . . , n}, then we have the following corollary:

Corollary 2.3. Suppose that ξ ∈ Cn is a random vector with independent, mean
0 and variance 1, L-subgaussian entries. Suppose that s ≲ n/ log4 n. Then

(1− δ)∥x∥2 ≤ 1

n
∥Aξx∥2 ≤ (1 + δ)∥x∥2 for all s-sparse x ∈ Cn

holds with probability at least 1− n− logn log2 s.

The above corollary shows that we can obtain (1 − δ)∥x∥2 ≤ 1
n∥Aξx∥2 ≤

(1 + δ)∥x∥2 for all s-sparse vector x provided s ≲ n/ log4 n.
We next introduce the main result in [15] which also plays an important role

in our analysis.

Theorem 2.4. ([15, Theorem 4.1]) For a sufficiently large n, a matrix M ∈
Cn×n, and sufficiently small ε, η > 0, the following holds. For some m =
O
(
log2(1/ε) · ε−1η−1 log n · log2(1/η)

)
, let Ω be a multiset of m uniform and in-

dependent random elements of {1, . . . , n}. Then, with probability 1−2−Ω(logn·log(1/η)),
it holds that for every x ∈ Cn,

1

n
(1−ε)∥Mx∥22−η∥x∥21∥M∥2∞ ≤ 1

m

∑
j∈Ω

|(Mx)j |2 ≤
1

n
(1+ε)∥Mx∥22+η∥x∥21∥M∥2∞,

(3)
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where ∥M∥∞ := maxi,j |Mi,j |.

3. Proofs of Theorem 1.1

Before giving the proof of Theorem 1.1, we next introduce a proposition which
shows that 1

n∥Aξx∥2 ≈ ∥x∥2 does not hold for all x ∈ Cn with high probability.

Hence, to guarantee 1
n∥Aξx∥2 ≈ ∥x∥2 we need to require x lies in some subset

in Cn. For example, in Theorem 1.1, we require s = ∥x∥0 ≲ n/ log4 n. This also
shows the essential difference between Aξ and Fourier matrices.

To state conveniently, we say a vector is a Gaussian random vector if the
entries are i.i.d. standard Gaussian random variables.

Proposition 3.1. Let ξ = (ξ1, . . . , ξn) ∈ Rn be a Rademacher vector or Gauss-
ian random vector and Aξ ∈ Rn×n be the random circulant matrix generated by
ξ. Then for any fixed ϵ > 0, there exists a vector x ∈ Rn and a positive constant
p0 so that

P
(
1

n
∥Aξx∥22 < ϵ

)
≥ p0 when n is large enough.

Proof. Setting x = 1√
n
(1, . . . , 1)⊤, we have

1

n
∥Aξx∥22 =

(
ξ1 + · · ·+ ξn√

n

)2

:= ζ2n.

For Gaussian random vector ξ, a simple observation is that ζn ∼ N (0, 1). It
implies that

P
(
1

n
∥Aξx∥22 < ϵ

)
= P(|ζn| <

√
ϵ) = 2(1− Φ(

√
ϵ)) := p0,

where Φ(x) is the cumulative distribution function of standard Gaussian random
variable. For Rademacher vector ξ, note that {ξi} is a i.i.d. random variable
sequence with E(ξi) = 0 and E(ξ2i ) = 1. Recall that

P
(
1

n
∥Aξx∥22 < ϵ

)
= P(|ζn| <

√
ϵ).

Then by Central Limit Theorem one finds that P(|ζn| <
√
ϵ) tends to 2(1 −

Φ(
√
ϵ)) with n tending to infinity. Hence, we arrive at conclusion.

□

We next give the proof of Theorem 1.1.

Proof of Theorem 1.1. Through out this proof, we assume that ∥x∥0 ≤ s. Recall
that Φξ =

1√
m
PΩAξ. From Corollary 2.3, we obtain that

(1− δ/4)∥x∥22 ≤
1

n
∥Aξx∥22 ≤ (1 + δ/4)∥x∥22, for all s -sparse vectors x (4)
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holds with probability at least 1− n− logn log2 s provided s ≲ δ2n/(log2 s log2 n).
Cauchy-Schwarz inequality implies that ∥x∥1 ≤

√
s∥x∥2. Observe that

∥Φξx∥22 =
1

m

∑
j∈Ω

|(Aξx)j |2.

For the given multiset Ω, choosing η ≥ δ/(4c2s) in Theorem 2.4 for a fixed circu-

lant matrixAξ with ∥Aξ∥∞ ≤ c, then with probability at least 1−2−C logn log(s/δ)

we have
1

n
(1− δ/4)∥Aξx∥22 − δ/4∥x∥22 ≤ ∥Φξx∥22 ≤

1

n
(1 + δ/4)∥Aξx∥22 + δ/4∥x∥22 (5)

provided m = O
(
log2(1/δ) · δ−2s log2(s/δ) log n

)
.

Combining (4) and (5), we obtain that

(1− δ)∥x∥22 ≤ ∥Φξx∥22 ≤ (1 + δ)∥x∥22
holds with probability at least 1 − 2−C logn log(s/δ) − n− logn log2 s, which arrives
at the conclusion.

□

References

[1] W. U. Bajwa, J. Haupt, G. Raz and R. Nowak, Compressed channel sensing, In Informa-
tion Sciences and Systems, 42nd Annual Conference on Information Sciences and Systems,
IEEE, 5–10, 2008.

[2] W. U. Bajwa, J. D. Haupt, G.M. Raz, S. J. Wright and R. D. Nowak, Toeplitz-structured
compressed sensing matrices, 14th Workshop on Statistical Signal Processing, IEEE, 294–
298, IEEE, 2007.

[3] T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing,
Applied and Computational Harmonic Analysis, 27, 265–274, 2009.

[4] J. Bourgain, An improved estimate in the restricted isometry problem, In Geometric As-
pects of Functional Analysis, 65–70, Springer, 2014.

[5] T. Cai and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse Signals
and Low-rank Matrices, IEEE Transactions on Information Theory, 60, 122-132, 2014.

[6] E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information, IEEE Transactions on Informa-
tion Theory, 52, 489–509, 2006.

[7] E. J. Candès, J. Romberg and T. Tao, Stable signal recovery from incomplete and inac-
curate measurements, Comm. Pure Appl. Math., 59, 1207-1223, 2006.

[8] S. S. Chen, D. L. Donoho and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM Review, 43, 129–159, 2001.

[9] D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52, 1289–
1306, 2006.

[10] S. Foucart, Hard thresholding pursuit: an algorithm for compressive sensing, SIAM Jour-
nal on Numerical Analysis, 49, 2543–2563, 2011.

[11] S. Foucart, Sparse recovery algorithms: sufficient conditions in terms of restricted isometry
constants, In Approximation Theory XIII: San Antonio 2010, 65–77, Springer, 2012.

[12] S. Foucart, A. Pajor, H. Rauhut and T. Ullrich, The gelfand widths of ℓp-balls for 0 <
p ≤ 1, Journal of Complexity, 26, 629–640, 2010.

[13] S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, Applied
and Numerical Harmonic Analysis, Birkhäuser Basel, 2013.
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