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Preface

These proceedings are based on papers presented at the international conference
on Approximation Theory XVI, which was held May 19–22, 2019 at Vanderbilt
University in Nashville, Tennessee. The conference was the sixteenth in a series
of meetings in Approximation Theory held at various locations in the USA. The
previous conferences in the series were held in Austin (1973, 1976, 1980, and 1992),
College Station (1983, 1986, 1989, and 1995), Nashville (1998), St. Louis (2001),
Gatlinburg (2004), and San Antonio (2007, 2010, 2013, and 2016).

The conference was attended by 134 participants from 20 countries and included
8 plenary lectures, 73 minisymposium talks, and 36 contributed talks. We would
like to thank all who attended, and in particular our plenary speakers Costanza
Conti (Università degli Studi di Firenze), John A. Evans (University of Colorado at
Boulder), Frances Kuo (University of New South Wales), Doug Hardin (Vanderbilt
University), Deanna Needell (University of California at Los Angeles), Rodrigo B.
Platte (Arizona State University), Gerlind Plonka-Hoch (University of Göttingen),
and Michael Unser (Swiss Federal Institute of Technology Lausanne).

Our thanks are due to the Department of Mathematics at Vanderbilt for providing
logistical support and to our reviewers who helped select papers for this volume and
for providing suggestions to the authors on ways to improve their papers.

Golden, CO, USA Gregory E. Fasshauer

Nashville, TN, USA Marian Neamtu

Nashville, TN, USA Larry L. Schumaker
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Time-Variant System Approximation via
Later-Time Samples

Roza Aceska and Yeon Hyang Kim

Abstract We develop a mathematical framework and efficient computational
schemes to obtain an approximate solution of partial differential equations (PDEs)
via sampled data. Recently, DeVore and Zuazua revisited the classical problem of
inverse heat conduction, and they investigated how to recover the initial temperature
distribution of a finite body from temperature measurements made at a fixed number
of later times. In this paper, we consider a Laplace equation and a variable coefficient
wave equation. We show that only one sensor employed at a crucial location
at multiple time instances leads to a sequence of approximate solutions, which
converges to the exact solution of these PDEs. This framework can be viewed as
an extension of the novel, dynamical sampling techniques.

Keywords Dynamical system · Evolutionary systems representations · Near-best
approximation · Initial datum

1 Introduction

Efficient data processing is essential in large data applications, whether the phe-
nomenon of interest is sound, heat, electrostatics, electrodynamics, fluid dynamics,
elasticity, or quantum mechanics. The spatial/time distribution of these aspects can
be described similarly in terms of PDEs. When solving a PDE of interest, we need
to know the initial conditions, described by some function [5, 6, 8]. However, in
real-life applications, full knowledge of the initial conditions is often impossible
due to unavailability of a large number of sensors [1, 7]. The way to overcome this
impairing is to exploit the evolutionary nature of the sampling environment, while
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2 R. Aceska and Y. H. Kim

working with a reduced number of sensors, i.e., employ the concept of dynamical
sampling [2–4].

The concept of dynamical sampling is beneficial in setups where the available
sensing devices are limited due to some access constraints. In such an under
sampled case, we use the coarse system of sensors multiple times to compensate
for the lack of samples at a single time instance. Our focus is on developing
methods which efficiently approximate solutions of important PDEs by engaging
the dynamical nature of the setup dictated by the initial conditions. We develop
the theory and algorithms for a new sampling and approximation framework.
This framework combines spatial samples of various states of approximations and
eventually provides an exact reconstruction of the solution. We assume that the
initial state of the solution is in a selected Sobolev class.

Recent results [7] show that only one sensor employed at a crucial location
at multiple time instances leads to a sequence of approximate solutions, which
converges to the exact solution of the heat equation:

ut = uxx,

u(0, t) = u(π, t) = 0,

u(x, 0) = f (x),
under the assumption that the initial condition function f is in a compact class of
Sobolev type. As a result, the sine basis decomposition coefficients of the initial
function have controlled decay. We apply this approach to solve other PDEs, while
using one spatial sensor multiple times for data collection: We use an appropriate
basis decomposition, and work under the assumption that the basis decomposition
coefficients of the initial state function have controlled decay. In other words, we
assume that the initial state of the solution is in a selected Sobolev class.

2 Laplace Equation

We study the problem of solving an initial value problem (IVP) from discrete
measurements made at appropriate instances/locations; thus, the initial conditions
are not known in full detail. We aim to show that with a carefully selected
placement and activation of the sensing devices, the unknown initial conditions can
be completely determined by the discrete set of measurements; thus, the general
solution to the IVP of interest is derived.

Under some initial and boundary conditions, the Laplace equation

uxx + uyy = 0, x ∈ [0, 1], y ≥ 0 (1)

ux(0, y) = ux(1, y) = 0, lim
y→∞ u(x, y) = 0 u(x, 0) = f (x),
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has a general solution

u(x, y) =
∞∑

k=0

ak cos(kπx) e−kπy, where ak = 2
∫ 1

0
f (x) cos(kπx) dx.

(2)
The solution to (1) is the steady state temperature u(x, y) in the semi-infinite

plate 0 ≤ x ≤ 1, y ≥ 0, with the assumption that the left and right sides are insulated
and assume that the solution is bounded. The temperature along the bottom side is
assumed to be a known function f (x).

In case the values f (x) are not fully known at all x ∈ [0, 1], we propose to take
samples uk := u(x0, yk), k ≥ 0, at an array of space-time locations (x0, yk), such
that | cos(kπx0)| ≥ d0k

−1 for some d0 > 0 and for all k integers, k �= 0. For the
condition | cos(kπx0)| ≥ d0k

−1 for some d0 > 0 and for all k integers, we choose
α ∈ (0, 3/2) so that

dist

(
α,

{
1

2k
,

3

2k
, . . . ,

2k + 1

2k

})
≥ c0

k2 , k = 1, 2, . . . ,

with c0 an absolute constant. Then we have

dist

(
αkπ,

{
π

2
,

3π

2
, . . . ,

(2k + 1)π

2

})
≥ c0π

k
, k = 1, 2, . . . ,

We then take x0 = α. We further assume that y1 < y2 < . . .. We work with (ck)k≥0
such that for some r > 0,

∑
c2
kk

2r ≤ 1. (3)

The function

F0(z) :=
∞∑

k=0

ckz
−k (4)

is an analytic function in the unit disk D = {z ∈ C : |z| < 1}, which is uniquely
determined by the set of coefficients (ck)k≥0. Furthermore, for the choice of z =
e−πy and ck = ak cos(kπx0), k ≥ 0, we have: F0(e

−πy) = u(x0, y).
Note that the evaluations

F0(zk) = uk, k ≥ 0, (5)

where zk = e−πyk , fully determine the function F0. In case there was another
analytic function on the open disc G0, which satisfied G0(zk) = uk , k ≥ 0, then
we’d have an analytic function F0 − G0 with countably many zeroes in D (since
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(F0 −G0)(zk) = 0, k ≥ 0); thus, F0 −G0 must be the zero function. This implies
that {uk|k = 0, 1, 2, ..} uniquely determines (2).

Next, we sample u(x, y) at locations (x0, yk), k ≥ 0, where

y0 > 0, yn = ρny0, n ≥ 1,

for some ρ > 2. The samples have an expansion

uj =
∞∑

k=0

cke
−kπyj =

∞∑

k=0

cke
−kπρj y0, j = 1, 2, . . . . (6)

Notice that by (6) it holds

c0 = un −
∞∑

k=1

cke
−kπρny0,

c1 = un−1e
πρn−1y0 − c0e

πρn−1y0 −
∞∑

k=2

cke
−kπρn−1y0,

c2 = un−2e
2πρn−2y0 − c0e

2πρn−2y0 − c1e
πρn−2y0 −

∞∑

j=3

cj e
−(j−2)πρn−2y0,

. . .

cn = unenπy0 − c0e
nπy0 − c1e

(n−1)πy0 − . . .−
∞∑

j=n+1

cj e
−(j−n)πy0 .

We take n+1 samples, and aim at approximating the initial value f , and respectively
the solution (2). We define

c̄0 := un,

c̄1 := un−1e
πρn−1y0 − c̄0e

πρn−1y0 ,

c̄2 := un−2e
2πρn−2y0 − c̄0e

2πρn−2y0 − c̄1e
πρn−2y0,

. . .

c̄n := unenπy0 − c̄0e
nπy0 − c̄1e

(n−1)πy0 − . . .− c̄n−1e
nπy0e−(n−1)πy0 .

For each j = 1, . . . , n, we denote the error in recovering cj by Ej := |c̄j − cj |.
Since ρ > 2, |cj | ≤ j−r ≤ k−r for j > k, and 1

1−e−πρny0 ≤
1

1−e−πy0 , we estimate
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E0 ≤
∞∑

j=1

|cj |e−jπρny0 ≤
∞∑

j=1

e−jπρny0 = e−πρny0

1− e−jπρny0
≤ e−πρny0

1− e−πy0
.

Lemma 1 For each j ≥ 0, we have

Ej ≤ 2j
e−πρn−j y0

1− e−πy0
.

Proof We use mathematical induction. The claim is verified for j = 0, 1. Suppose
the claim holds true for all j ≤ k − 1 for some k ≥ 1. Then

Ek

≤ E0e
πρn−ky0k + E1e

πρn−ky0(k−1) + . . .+ Ek−1e
πρn−ky0 +

(
1

k + 1

)r
e−πρn−ky0

1− e−πy0

≤
k−1∑

j=0

2j
e−πρn−j y0

1− e−πy0
eπρ

n−ky0(k−j) +
(

1

k + 1

)r
e−πρn−ky0

1− e−πy0

≤ e−πρn−ky0

1− e−πy0

⎡

⎣
k−1∑

j=0

2j e−πρn−j y0−πρk−j y0−πρn−ky0 +
(

1

k + 1

)r
⎤

⎦

Since ρ > 2,

e−πρn−j y0−πρk−j y0−πρn−ky0 ≤ 1, (7)

which implies that

k−1∑

j=0

2j e−πρn−j y0−πρk−j y0−πρn−ky0 +
(

1

k + 1

)r
≤ 2k.

For the inequality (7)

e−πρn−j y0−πρk−j y0−πρn−ky0 ≤ 1, (8)

since

−πρn−j y0 − πρk−j y0 − πρn−ky0 = −πt0(ρk−j − (k − j + 1)),

we need to have, for 0 ≤ j < k,

ρk−j > k − j + 1.
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This implies ρk > k + 1 for k ≥ 1. When k = 1, we have ρ > 2. By the
mathematical induction, we have ρk > k + 1 for k ≥ 1 if ρ > 2.

We define an approximation Fn(x) to f (x) as

Fn(x) :=
m∑

j=0

c̄j

cos jπx0
cos jπx, m := �n

2
	.

Theorem 1 Given any fixed choice of y1 > 0, ρ > 2, let yk := ρky0, k ≥ 1. Then
for f ∈ {∑ ak cos kπx ∈ L2([0, 1]} : ∑∞

k=1 k
2r |ak|2 ≤ 1}, whenever

e−πyk ≤ 2−kk−r−1,

we have

lim
n→∞‖f − Fn‖ = 0.

Proof By Lemma 1, we have

‖f − Fn‖2 ≤
m∑

j=0

E2
j

| cos jπx0|2 +
∞∑

j=m+1

|aj |2

≤
m∑

j=0

(
j

d0

)2
(

2j
e−πρn−j y0

1− e−πy0

)2

+m−2r

≤
(
m

d0

)2
(
e−πρmy0

1− e−πy0

)2 m∑

j=0

22j +m−2r

=
(
m

d0

)2 (
e−πym

1− e−πy0

)2 m∑

j=0

22j +m−2r

≤
(

3

4d2
0 (1− e−πy0)2

+ 1

)
m−2r → 0,

as n→∞.

3 Variable Coefficient Wave Equation

In this section, we consider the following generalization of the wave equation:

uxx + (1+ t)2utt + 1

1+ t ut = 0, t ≥ 0, (9)
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where x ∈ [0, π ] and t ≥ 0. A simple calculation shows that the solution of this
equation is

u(x, t) =
∑

k≥1

ak sin(kx)
1

(1+ t)k ,

where (ak)∞k=1 are the Fourier sine coefficients of f (x) = u(x, 0). Thus if the initial
function is f (x) = u(x, 0) is given, then we can obtain u = u(x, t). In case f (x)
is not known at all x ∈ [0, π ], we use later time samples, which are available at one
fixed location x0 and at time instances

t1 < t2 < . . . < ts < . . .

to recover the initial datum f , and consequently u. To do this, we first choose x0
using a similar argument as in Sect. 2 so that we have | sin(kx0)| ≥ d0k

−1 for some
d0 > 0 and for all k ≥ 1.

We note that the samples satisfy

us := u(x0, ts) =
∑

k≥1

ak sin(kx0)
1

(1+ ts)k =
∑

k≥1

ck
1

(1+ ts)k , (10)

where ck := ak sin(kx0). We further assume that we have
∑
k c

2
kk

2r ≤ 1. We
will impose conditions on the time instances employed so we can construct an
approximation of the initial datum and thus recover u(x, t). As we will see, the
choice for t1 = ρ >

√
2, tk ≥ ρ2k−1−1 when k ≥ 2, will provide good convergence

rate. We set the algorithm as follows:

c̄1 = un(1+ tn),

and for 2 ≤ k ≤ n we set

c̄k = un−k(1+ tn−k+1)
k −

k−1∑

j=1

c̄j
(1+ tn−k+1)

k

(1+ tn−k+1)j
.

Lemma 2 For every n ≥ 1 and 1 ≤ k ≤ n, we have

Ek := |ck − c̄k| ≤ 2k−1A0
1

1+ tn−k+1
, (11)

where A0 = 2−r 1
1−(1+t1)−1 .

Proof First, we note that for the choice of tk it holds:
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1

1+ tn−j+1

(1+ tn−k)k+1

(1+ tn−k)j ≤ 1

1+ tn−k when j ≤ k. (12)

Then

E1 ≤
∑

k>1

|cj | 1+ tn
(1+ tn)j ≤ 2−r

∑

k>1

(1+ tn)−(j−1)

= 2−r (1+ tn)−1 1

1− (1+ tn)−1 ≤ 2−r (1+ tn)−1 1

1− (1+ t1)−1 .

Suppose for every j ≤ k it holds Ej ≤ 2j−1A0
1

1+tn−j+1
. Then

Ek+1 ≤
∑

j<k+1

Ej
(1+ tn−k)k+1

(1+ tn−k)j +
∑

j>k+1

|cj | (1+ tn−k)
k+1

(1+ tn−k)j

≤
∑

j<k+1

2j−1A0
1

1+ tn−j+1

(1+ tn−k)k+1

(1+ tn−k)j +
∑

j>1

|cj | 1

(1+ tn−k)j .

By (12), it holds

Ek+1 ≤
∑

j<k+1

2j−1A0
1

1+ tn−k +
1

(k + 1)r
1

1+ tn−k
1

1− (1+ tn−k+1)−1

≤
∑

j<k+1

2j−1A0
1

1+ tn−k +
1

(k + 1)r
1

1+ tn−k A0 ≤ 2kA0
1

1+ tn−k .

To simplify our calculations, we assume we always take n = 2m samples, and
define

Fn :=
m∑

k=1

c̄kfk. (13)

Theorem 2 Let t1 = ρ >
√

2 and tk ≥ ρ2k−1 − 1 when k ≥ 2. Then, whenever
f ∈ {∑ ak sin kx ∈ L2(R) : ∑∞

k=1 k
2r |ak|2 ≤ 1}, we have

lim
n→∞‖f − Fn‖ = 0.

Proof By the decay assumption on (ck)k≥1, we obtain
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‖f − Fn‖2
2 ≤

m∑

k=1

|ck − c̄k|2 +
∑

k>m

|ck|2 ≤
m∑

k=1

2k−1A0
1

1+ tn−k+1
+ 1

m2r
.

Since tn−k+1 − 1 = ρ2n−k , for k = 1, 2, . . . , m we have

2k−1

1+ tn−k+1
= 2k−1

ρ2n−k ≤
2k−1

ρ2m
.

Thus

‖f − Fn‖2 ≤ A0
1

ρ2m

m∑

k=1

2k−1 + 1

m2r =
2mA0

ρ2m + 1

m2r ≤
C

m2r .
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C1-Quartic Butterfly-Spline
Interpolation on Type-1 Triangulations

Domingo Barrera, Costanza Conti, Catterina Dagnino, María José Ibáñez,
and Sara Remogna

Abstract In this paper, we construct and analyse C1 quartic interpolating splines
on type-1 triangulations, approximating regularly distributed data. This is achieved
by defining the associated Bernstein-Bézier coefficients from point values of the
function to be approximated in such a way that C1 regularity is obtained for enough
regular functions as well as the optimal order of approximation. We construct such
interpolating splines by combining a quasi-interpolating spline with one step of an
interpolatory subdivision scheme. Numerical tests confirming the theoretical results
are provided.

Keywords Spline approximation · Bernstein-Bézier form · Type-1 triangulation

1 Introduction

The use of spline interpolation and quasi-interpolation for the approximation of
functions and data is widely developed in the literature and many approaches
have been proposed. Schemes based on the construction of finite elements, macro-
elements and local stable minimal determining sets for general (refined or not)
triangulations of a polygonal domain have been proposed (see e.g. [16, 17] and
references therein), as well as the definition of such approximating splines in the
space spanned by a family of compactly supported functions (see e.g. [8] and [20]).
In the uniform case, box splines have been also extensively used (see e.g. [5, 10, 24]
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and references therein, and [3, 4, 18, 19]), and a new procedure was introduced
based on the definition of the Bernstein-Bézier (BB-) coefficients of the splines on
each triangle in the partition by using only point values in a neighbourhood of the
triangle. The BB-coefficients are properly defined to produce globally C1 splines
and to achieve the required polynomial reproduction (see e.g. [1, 14, 21, 23] and
[22] for the 3D case).

The C1 quartic scheme exact on cubic polynomials introduced in [23] is a par-
ticular case of a general family derived in [2] that depends on some free parameters.
The BB-coefficients with respect to any triangle of the quasi-interpolating splines
are defined from the values at a large number of points lying in a neighbourhood of
the triangle, so it is quite natural to think about reducing the number of evaluations
needed to compute the BB-coefficients. This issue is dealt with in [2], where it
is proved that only evaluation at vertices and midpoints of edges of triangles are
needed.

In this paper, we follow this approach and combine a quasi-interpolating spline
with one step of the so called modified Butterfly interpolatory subdivision scheme
to construct C1 quartic interpolating splines on regular type-1 triangulations,
whose BB-coefficients are defined uniquely from the values at the vertices of the
triangulation.

The organization of the paper is as follows. In Sect. 2, some results on the
representation of C1-quartic splines on three-directional triangulations are recalled,
as well as the notations to be used in the paper. In Sect. 3 we recall the family
of quasi-interpolation operators studied in [2]. In particular, all of them depend on
some free parameters, so we propose some specific choices for them. In Sect. 4 we
present the construction of a family of interpolating splines, obtained by combining
the quasi-interpolating splines of Sect. 3, with one step of the modified Butterfly
interpolatory subdivision scheme. We also discuss the approximation properties of
the corresponding operators. Finally, in Sect. 5, we propose some numerical tests to
confirm the theoretical results established in the previous sections.

2 Notations and Preliminaries

We consider the type-1 triangulationΔ defined by the directions d1 := (h, h), d2 :=
(h,−h) and d3 := d1 + d2, with h > 0. Its vertices vi,j are linear combinations of
directions d1 and d2 with integer coefficients, i.e. vi,j := id1 + jd2, i, j ∈ Z.
The two-dimensional lattice V := {vi,j : i, j ∈ Z

}
decomposes the real plane into

parallelograms Pi,j with vertices vi,j , vi,j+1, vi+1,j+1 and vi+1,j (see Fig. 1(left)),
each of which is subdivided into two triangles Ti,j and T̃i,j obtained by connecting
the vertices vi,j and vi+1,j+1, so that

Δ :=
⋃

i,j∈Z

(
Ti,j ∪ T̃i,j

)
.
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d1

d2

d1 + d2

−d1

−d2

−d1 − d2 vi,j

vi+1,j

vi+1,j+1

vi,j+1vi−1,j

vi−1,j−1

vi,j−1

Ti,j

Ti,j

vi,j

vi+1,j

vi+1,j+1

vi,j+1vi−1,j

vi−1,j−1

vi,j−1

Ti,j

Ti,j

Ti,j−1

Ti−1,j

Ti−1,j−1

Ti−1,j−1

Fig. 1 The triangulation Δ (left) and the hexagon Hi,j (right)

The triangles sharing a vertex vi,j determine an hexagon, denoted by Hi,j (see
Fig. 1(right)).

The approximating splines will be constructed in the space

S1
4 (Δ) :=

{
s ∈ C1

(
R

2
)
: s|T ∈ P4, for all T ∈ Δ

}
,

where P4 stands for the space of bivariate quartic polynomials. Such splines will be
defined by directly setting their BB-coefficients on the triangles ofΔ (see e.g. [16]).
The restriction to a triangle T ∈ Δ with vertices v0, v1 and v2 of a spline s ∈ S1

4 (Δ)

can be expressed as

s|T =
∑

i+j+k=4

cTi,j,kB
T
i,j,k,

where BTi,j,k := 4!
i!j !k!b

i
0b
j

1b
k
2, i, j, k ≥ 0, i + j + k = 4, are the Bernstein poly-

nomials of degree 4 associated with T and the barycentric coordinates (b0, b1, b2)

w.r.t. T satisfy the equalities (x, y) = b0v0 + b1v1 + b2v2, b0 + b1 + b2 = 1
for (x, y) ∈ T . To alleviate the notation, no reference is made to the triangle with
respect to which the barycentric coordinates are determined.

Each BB-coefficient cTi,j,k of the quartic polynomial s|T is associated to the

domain point ξ4
i,j,k := (iv0 + jv1 + kv2) /4 in T . Let D4 be the subset of the

domain points arising when all triangles in Δ are run. Each vertex gives rise to a
single point in D4. The same is applicable for any domain point on an common
edge to two triangles (see Fig. 2). If quadratic splines are considered instead of
quartic splines, their BB-representations give rise to coefficients associated with the
domain points ξ2

i,j,k := (iv0 + jv1 + kv2) /2, from which the subset D2 is defined.
Finally, the subset D1 is the collection of all vertices of the triangulation Δ (see
Fig. 3).
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Fig. 2 The points of D4 relative to Hi,j
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vi+1,j
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vi,j+1vi−1,j

vi−1,j−1

vi,j−1

e1,1
i,j

e1,0
i,j

e0,1
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e0,1
i+1,j

e1,1
i,j−1

e0,1
i,j−1

e1,1
i−1,j−1

e1,0
i−1,j−1

e0,1
i−1,j−1 e1,0

i−1,j

e1,1
i−1,j

e1,0
i,j+1

vi,j

vi+1,j

vi+1,j+1

vi,j+1vi−1,j

vi−1,j−1

vi,j−1

Fig. 3 The points of D2 (left) and D1 (right) relative to Hi,j

Moreover, we define D� :=⋃i,j Di,j� , � = 2, 4 with

• Di,j4 := {vi,j
} ∪
{
e
k,m
i,j , k,m ∈ {0, 1} , k +m �= 0

}

∪
{
u
k,m
i,j , z

k,m
i,j , k,m ∈ {−1, 0, 1} , k +m �= 0

}
, where

– e
k,m
i,j is the midpoint of

[
vi,j , vi+k,j+m

]
,

– u
k,m
i,j := 1

4

(
3vi,j + vi+k,j+m

)
,

– z
k,m
i,j := 1

4

(
2vi,j + vi+k,j+m + vr,s

)
, with vr,s the third vertex of[

vi,j , vi+k,j+m, vr,s
] ∈ Δ counting counterclockwise;

• Di,j2 :=
{
vi,j , e

1,0
i,j , e

0,1
i,j , e

1,1
i,j

}
.
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3 C1 Quartic Quasi-interpolating Splines on D2

In order to make the paper self-contained, here we briefly recall how the quasi-
interpolating spline Q4,2f ∈ S1

4 (Δ) in [2] is defined. Such a spline is constructed
using the values of f on D2.

We take advantage of the fact that Δ is a uniform triangulation to define the BB-
coefficients of the restriction of the quasi-interpolating Q4,2f to each triangle. For
instance, we write the restriction ofQ4,2f to the triangle Ti,j as

Q4,2f|Ti,j =c
(
vi,j
)
B
Ti,j
4,0,0 + c

(
u

1,1
i,j

)
B
Ti,j
3,1,0 + c

(
u

1,0
i,j

)
B
Ti,j
3,0,1

+ c
(
e

1,1
i,j

)
B
Ti,j
2,2,0 + c

(
z

1,1
i,j

)
B
Ti,j
2,1,1 + c

(
e

1,0
i,j

)
B
Ti,j
2,0,2

+ c
(
u
−1,−1
i+1,j+1

)
B
Ti,j
1,3,0 + c

(
z

0,−1
i+1,j+1j

)
B
Ti,j
1,2,1 + c

(
z
−1,0
i+1,j

)
B
Ti,j
1,1,2

+ c
(
u
−1,0
i+1,j

)
B
Ti,j
1,0,3 + c

(
vi+1,j+1

)
B
Ti,j
0,4,0 + c

(
u

0,−1
i+1,j+1

)
B
Ti,j
0,3,1

+ c
(
e

0,1
i+1,j

)
B
Ti,j
0,2,2 + c

(
u

0,1
i+1,j

)
B
Ti,j
0,1,3 + c

(
vi+1,j

)
B
Ti,j
0,0,4,

where the notation c (p) is used for the BB-coefficient relative to the domain point
p ∈ D4.

Moreover, once defined the BB-coefficients relative to Ti,j , those corresponding
to the other five triangles around the vertex vi,j are defined by translation and/or
rotation.

In order to obtain an interpolatory spline at the vertices, we define c
(
vi,j
) :=

f
(
vi,j
)
.

The domain points p ∈ D4 have been labelled as u, e and z-points. Their BB-
coefficients will be defined as linear combinations of the values of f at 19 points in
D2 (see Fig. 3). As an example,

c
(
u

1,1
ij

)
=γ 0f

(
vij
)+ γ 1f

(
e

1,1
i,j

)
+ γ 2f

(
e

1,0
i,j

)
+ γ 3f

(
e

0,1
i,j−1

)
+ γ 4f

(
e

1,1
i−1,j−1

)

+ γ 5f
(
e

1,0
i−1,j

)
+ γ 6f

(
e

0,1
i,j

)
+ γ 7f

(
vi+1,j+1

)+ γ 8f
(
e

0,1
i+1,j

)

+ γ 9f
(
vi+1,j

)+ γ 10f
(
e

1,1
i,j−1

)
+ γ 11f

(
vi,j−1

)+ γ 12f
(
e

1,0
i−1,j−1

)

+ γ 13f
(
vi−1,j−1

)+ γ 14f
(
e

0,1
i−1,j−1

)
+ γ 15f

(
vi−1,j

)+ γ 16f
(
e

1,1
i−1,j

)

+ γ 17f
(
vi,j+1

)+ γ 18f
(
e

1,0
i,j+1

)
.

The coefficients used to define the above linear combination form the mask γ ∈ R
19,

and c
(
u

1,1
i,j

)
= fi,j · γ , where the vector fi,j ∈ R

19 contains the values of f (p),
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Fig. 4 Order for enumerate
fi,j , α, β, γ

μ0 μ1

μ2μ3

μ4

μ5 μ6

μ7

μ8

μ9μ10μ11

μ12

μ13

μ14

μ15 μ16 μ17

μ18

p ∈ D4 ∩Hi,j , enumerated as indicated in Fig. 4, as well as γ . The BB-coefficients
associated with the other u-points (u1,0

i,j , u0,−1
i,j , u−1,−1

i,j , u−1,0
i,j , and u0,1

i,j ) are defined
analogously from the rotated versions of γ .

In the same way, c
(
e

1,1
i,j

)
and c

(
z

1,1
i,j

)
are defined by considering the masks

α and β, respectively. It means c
(
e

1,1
i,j

)
= fi,j · α and c

(
z

1,1
i,j

)
= fi,j · β. The

BB-coefficients c (e) and c (z) relative to an e-point and a z-point, respectively, are
defined from the rotated versions of α and β.

It is known that a quasi-interpolation operator in S1
4 (Δ) can reproduce the space

of cubic polynomials (see e.g. [10, 15]). Therefore, the masks α, β and γ must be
defined to obtain C1-regularity and the exactness on P3 of the quasi-interpolation
operator. In other words, we require that the following constrains are satisfied:

Q4,2f ∈ C1
(
R

2
)

and Q4,2f = f for all f ∈ P3. (1)

In [2] the following result is established.

Proposition 1 The imposition of (1) results in infinitely many solutions depending
on the first three elements β1, β2, β3 of the mask β. The mask α is uniquely
determined from the following values (see Fig. 5):

α0 = α7 = − 1
3 , α1 = 2

3 , α2 = α6 = α8 = α18 = 1
3 , α9 = α17 = − 1

6 ,

αj = 0, j ∈ {3, 4, 5, 10, 11, 12, 13, 14, 15, 16}

The values of the masks β and γ are given in Figs. 6 and 7.

Concerning the error estimates, the following classical result (see e.g. [10, 16])
holds.

Theorem 1 For an arbitrary triangle T in Δ and for a given f ∈ Cm+1
(
R

2
)
,

0 ≤ m ≤ 3,

∥∥Dν
(
f −Q4,2f

)∥∥∞,T ≤ K|ν|hm+1−|ν|
∥∥∥Dm+1f

∥∥∥∞,ΩT
,
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Fig. 5 The BB-coefficient
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Fig. 6 The evaluation of the BB-coefficient c
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requires the mask β, whose values depend

on three free parameters
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Fig. 7 The mask γ needed to evaluate c
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)
also depends on three free parameters
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for all 0 ≤ |ν| ≤ m, ν := (ν1, ν2), where K|ν| are constants independent on h and
ΩT denotes the union of all triangles T ∈ Δ that intersect T .

Masks β and γ depend on three parameters, so a strategy is needed to choose
them.

The first strategy is reduced to assigning zero values to these parameters. Another
possibility is to set β1 = β2 and β3 = 0, so that the resulting masks have certain
symmetries. Since

∥∥Q4,2
∥∥∞ ≤ max

{‖α‖1 , ‖β‖1 , ‖γ ‖1
}

and ‖α‖1 = 3, it is easy to minimize the upper bound U
(
β1
) :=

max
{
3, ‖β‖1 , ‖γ ‖1

}
to obtain that

∥∥Q4,2
∥∥∞ is bounded by 3 if β1 ∈

[
13
36 ,

41
84

]
.

In the following we will use such a choice for the free parameters, obtaining a
family of quasi-interpolating splines depending on β1 and we denote it byQβ1

4,2f .

4 C1 Quartic Interpolating Splines on D1

In this section, we discuss the construction of new interpolating splines by applica-
tion of a ‘preprocessing’ to the quasi-interpolating splines Qβ1

4,2f . The idea is, first,
to approximate the function f at the points of type e by one step of a subdivision
algorithm suitable for type-1 triangulated data, and then use the quasi-interpolating
operatorQβ1

4,2. The result is a spline interpolating at the points of D1 since the quasi-

interpolantQβ1
4,2 has this property.

4.1 The Modified Butterfly Interpolatory Subdivision Scheme

We recall that a bivariate subdivision scheme is an iterative algorithm for refining a
set of points f = {fj , j ∈ Z

2} by repeatedly applying a linear refinement operator
Sa of type

(Saf)i =
∑

j∈Z2

ai−2jfj , i ∈ Z
2. (2)

From (2) we see that, at each step of the recursion, the ‘refined’ points are linear
combinations of the ‘coarse’ points with real coefficients being the subdivision mask
a = {ai, i ∈ Z

2
}

(for more details, see [6, 7, 11], and reference therein). From (2)
we also see that one step of a subdivision scheme transforms a set of data points
attached to Z

2 into a set of data points attached to 1
2Z

2.
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Even though subdivision schemes usually keep refining data till convergence
to a continuous limit, the idea here is to use just one step of the so called
Modified Butterfly Interpolatory Subdivision Scheme (MBISS) for data on type-
1 triangulations. The MBISS is an interpolatory scheme (see [13]) meaning that at
each step the coarse set of points is included into the refined one and new points are
inserted. This translates into the refinement rule (‘duplication’ rule)

p
[k+1]
2i = p[k]i , i ∈ Z

2.

Each of the three insertion rules of the MBISS, transforming a sequence from level
k to level k + 1, is involving 10 points lying around the point to be inserted and are
exactly the same for all three possible directions of insertion. They are as follows:

– for the ‘horizontal’ insertion

p
[k+1]
2i+(1,0) = ( 1

2 − ω)
(
p
[k]
i + p[k]i+(0,1)

)
+ ( 1

8 + 2ω)
(
p
[k]
i−(1,0) + p[k]i+(1,1)

)

+ω
(
p
[k]
i−(0,1) + p[k]i+(0,1)

)

+(− 1
16 − ω)

(
p
[k]
i+(1,0) + p[k]i+(1,2) + p[k]i−(1,1) + p[k]i−(1,−1)

)
,

(3)
– for the ‘vertical’ insertion

p
[k+1]
2i+(0,1) = ( 1

2 − ω)
(
p
[k]
i + p[k]i+(1,0)

)
+ ( 1

8 + 2ω)
(
p
[k]
i−(0,1) + p[k]i+(1,1)

)

+ω
(
p
[k]
i−(1,0) + p[k]i+(2,0)

)

+(− 1
16 − ω)

(
p
[k]
i+(0,1) + p[k]i−(1,1) + p[k]i+(1,−1) + p[k]i+(2,1)

)
,

(4)
– for the ’diagonal’ insertion

p
[k+1]
2i+(1,1) = ( 1

2 − ω)
(
p
[k]
i + p[k]i+(1,1)

)
+ ( 1

8 + 2ω)
(
p
[k]
i+(1,0) + p[k]i+(0,1)

)

+ω
(
p
[k]
i+(2,2) + p[k]i−(1,1)

)

+(− 1
16 − ω)

(
p
[k]
i−(0,1) + p[k]i+(2,1) + p[k]i+(1,2) + p[k]i−(1,0)

)
.

(5)

For the MBISS we mention the following properties that are relevant in our
discussion (see [13] for all details).
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Proposition 2 Ifw ∈
(
− 1

32 ,
1

32

)
, then the MBISS is convergent. Moreover, forw ∈

(
− 1

32 ,
1
32

)
the MBISS step-wise reproduces the space P3 of bivariate polynomials

of degree 3. The latter means that in case the points at one level are sampled from
a polynomial of degree 3, the points at the next level are samples of the same
polynomial at refined grid values.

We remark that, in view of Proposition 2, the MBISS has approximation order 4

for all ω ∈
(
− 1

32 ,
1
32

)
and that for ω = 0 the MBISS reduces to the better known

Butterfly subdivision scheme presented in [12].

4.2 C1 Quartic Interpolating Splines

Now we are able to construct the interpolating splines by approximating the values
of f at the e-points of Qβ1

4,2f , by one step of the MBISS. Indeed, according

to (3), (4), and (5), considering the notations used for Qβ1
4,2f , we define f (e1,1

i,j )

as (see Fig. 8)

f
(
e

1,1
i,j

)
=
(

1
2 − ω

) (
f (vi,j )+ f (vi+1,j+1)

)+ ω (f (vi−1,j−1)+ f (vi+2,j+2)
)

+
(
− 1

16 − ω
) (
f (vi,j−1)+ f (vi+2,j+1)+ f (vi+1,j+2)+ f (vi−1,j )

)

+
(

1
8 + 2ω

) (
f (vi+1,j )+ f (vi,j+1)

)

and similarly for the other e-points.
In this way, by combining the masks α, β and γ of Qβ1

4,2f with the masks of the
MBISS, we obtain new masks α′, β ′ and γ ′ larger than the corresponding masks
α, β and γ but still based on the same number of points (see Figs. 9, 10, 11).
Such masks depend on the parameter β1, coming from the quasi-interpolating

a0
vi,j

a3
vi+1,j

a0
vi+1,j+1

a3
vi,j+1

a2
vi−1,j

a2
vi+1,j+2

a1
vi−1,j−1

a1
vi+2,j+2

a2
vi,j−1

a2
vi+2,j+1

e1,1
i,j

Fig. 8 Edge-point stencil of MBISS, with coefficients a0 = 1
2 − ω, a1 = ω, a2 = − 1

16 − ω,

a3 = 1
8 + 2ω
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Fig. 9 The values in this figure provide the mask α′ used to evaluate c
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e

1,1
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)
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Fig. 10 The values in this figure provide the mask β ′ used to evaluate c
(
z
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)
. The values depend

on the parameter q = 3
16β1 − 5

3ω + 4β1ω
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Fig. 11 The values in this figure provide the mask γ ′ used to evaluate c
(
u

1,1
i,j

)
. Also in this case

its values depend on q
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spline Qβ1
4,2f and ω coming from the subdivision scheme. Therefore, we denote

the corresponding interpolating splines by Iβ1,ω

4,1 f .

We remark that while for the construction of Qβ1
4,2f we assume to know the

values of f on D2, for the construction of Iβ1,ω

4,1 f it is sufficient to know the function
f on D1, the vertices of the triangulation.

Thanks to the approximation properties ofQβ1
4,2 and of the MBISS here used, we

have that Iβ1,ω

4,1 f is a quartic spline with C1 smoothness and the associated operator

I
β1,ω

4,1 is exact on cubic polynomials and the error estimates of Theorem 1 hold.
Again, we continue by proposing some strategies in order to fix the free

parameters. If we choose ω = 0, that corresponds to the classical Butterfly
subdivision scheme, we have only one free parameter. Since

∥∥∥Iβ1,ω

4,1

∥∥∥∞ ≤ max
{∥∥α′

∥∥
1 ,
∥∥β ′
∥∥

1 ,
∥∥γ ′
∥∥

1

} ≤ 145

96
,

we find that the value of β1 that minimizes the upper bound is β1 = 29
72 .

Another possibility is to consider the parameter q := 3
16β1 − 5

3ω + 4β1ω,
appearing in the masks β ′ and γ ′. If we minimize again the upper bound for

the infinity norm of Iβ1,ω

4,1

(∥∥∥Iβ1,ω

4,1

∥∥∥∞ ≤ max
{∥∥α′

∥∥
1 ,
∥∥β ′
∥∥

1 ,
∥∥γ ′
∥∥

1

})
we find the

same value 145
96 obtained before, corresponding to the choice q = 29

384 . Hence, we
can choose ω and β1 consequently. Another possible choice is to set q = 1

12 . In this
case the masks β ′ and γ ′ have several zero coefficients in their definition, which is
always convenient.

Obviously, other criteria for the selection of the free parameter can be considered.

5 Numerical Results

The performance of the operators defined in this paper are tested on two functions
defined on the unit square. They are Franke’s function

f1 (x) = 0.75e

(
− (9x1−2)2

4 − (9x2−2)2

4

)

+ 0.75e

(
− (9x1+1)2

49 − 9x2+1
10

)

+0.5e

(
− (9x1−7)2

4 − (9x2−3)2

4

)

− 0.2e
(−(9x1−4)2−(9x2−7)2

)
,

and the radial function

f2 (x) = 0.1

(
1+ cos

(
12π cos

(
π

√
x2

1 + x2
2

)))
.

The latter is a highly oscillating function.
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In order to estimate the maximal error (ME) as a function depending on a
parameter h (MEh), the error |f −Qf | is evaluated at M points in a finite subset
G = {(

g1,i , g2,j
) : (i, j) ∈ J} ⊂ [0, 1]2. Moreover, the root mean square error

(RMSE) is estimated as

RMSEh :=
√∑

(i,j)∈J
(
f
(
g1,i , g2,j

)−Qf (g1,i , g2,j
))2

M
.

Regarding the value ofM , the splinesQf have been evaluated by the de Casteljau’s
algorithm [16, p. 25] on 300 points in each of the triangles of the partition associated
with the value h. Once computed MEh and RSMEh, the numerical convergence
orders are evaluated according to the expression NCO := log2

MEh
MEh/2

.
As said before, f2 is a highly oscillating function, therefore the initial value of h

must be smaller than the one used for f1.
Table 1 shows the values MEh, RMSHh and NCOh relative to Iβ1,ω

4,1 f with

β1 = 29
72 and ω = 0. In Table 2 we report the results corresponding to the choice

q = 1
12 .

Table 1 Numerical results relative to Iβ1,ω

4,1 f with β1 = 29
72 and ω = 0

Test function f1 Test function f2

h MEh NCO RMSEh MEh NCO RMSEh

1/4 3.44× 10−1 - 8.44× 10−2

1/8 9.43× 10−2 1.87 2.48× 10−2

1/16 2.89× 10−2 1.71 3.12× 10−3

1/32 2.76× 10−3 3.39 2.50× 10−4

1/64 1.81× 10−4 3.94 1.60× 10−5 1.05× 10−1 - 1.69× 10−2

1/128 1.16× 10−5 3.97 9.97× 10−7 1.11× 10−2 3.24 1.57× 10−3

1/256 7.22× 10−7 4.00 6.22× 10−8 6.88× 10−4 4.01 1.00× 10−4

1/512 4.51× 10−8 4.00 3.89× 10−9 4.27× 10−5 4.01 6.22× 10−6

Table 2 Numerical results relative to Iβ1,ω

4,1 f with q = 1
12

Test function f1 Test function f2

h MEh NCO RMSEh MEh NCO RMSEh

1/4 3.46× 10−1 - 8.54× 10−2

1/8 8.97× 10−2 1.95 2.36× 10−2

1/16 2.77× 10−2 1.70 2.96× 10−3

1/32 2.63× 10−3 3.40 2.38× 10−4

1/64 1.77× 10−4 3.89 1.57× 10−5 1.00× 10−1 - 1.63× 10−2

1/128 1.15× 10−5 3.95 9.91× 10−7 9.82× 10−3 3.35 1.48× 10−3

1/256 7.21× 10−7 4.00 6.22× 10−8 6.61× 10−4 3.89 9.78× 10−5

1/512 4.51× 10−8 4.00 3.89× 10−9 4.23× 10−5 3.97 6.18× 10−6
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Table 3 Numerical results relative toQβ1
4,2f with β1 = 2

5

Test function f1 Test function f2

h MEh NCO RMSEh MEh NCO RMSEh

1/4 1.69× 10−1 - 4.25× 10−2

1/8 4.48× 10−2 1.92 8.06× 10−3

1/16 7.90× 10−3 2.50 7.40× 10−4

1/32 4.92× 10−4 4.01 4.52× 10−5

1/64 2.96× 10−5 4.05 2.64× 10−6 4.04× 10−2 - 4.83× 10−3

1/128 1.82× 10−6 4.02 1.61× 10−7 2.39× 10−3 4.08 2.91× 10−4

1/256 1.13× 10−7 4.01 1.00× 10−8 1.25× 10−4 4.26 1.67× 10−5

1/512 7.05× 10−9 4.00 6.26× 10−10 7.31× 10−6 4.10 1.01× 10−6

Table 4 Numerical results for the quasi-interpolation operator given in [23]

Test function f1 Test function f2

h MEh NCO RMSEh MEh NCO RMSEh

1/4 7.27× 10−2 - 1.78× 10−2

1/8 1.56× 10−2 2.22 1.76× 10−3

1/16 1.28× 10−3 3.61 1.37× 10−4 4.02× 10−1 - 8.54× 10−2

1/32 1.02× 10−4 3.64 1.14× 10−5 8.86× 10−2 2.18 1.06× 10−2

1/64 1.06× 10−5 3.27 8.37× 10−7 7.66× 10−3 3.53 8.05× 10−4

1/128 7.70× 10−7 3.79 5.54× 10−8 4.51× 10−4 4.08 6.74× 10−5

1/256 4.97× 10−8 3.95 3.52× 10−9 3.73× 10−5 3.60 5.20× 10−6

1/512 3.13× 10−9 3.99 2.21× 10−10 2.79× 10−6 3.74 3.47× 10−7

Finally, for the sake of comparison, in Table 3 we report the results obtained by

using the quasi-interpolating spline Qβ1
4,2f with β1 = 2

5 ∈
[

13
36 ,

41
84

]
and in Table 4

we report the results obtained by the quasi-interpolating spline proposed in [23] (see
Table 5 and Table 3 in [2]).

The results are in accordance with the theoretical order of convergence. We
remark that the approximating splines Qβ1

4,2f and the one proposed in [23] produce

results similar to those obtained by Iβ1,ω

4,1 f for the two different selections of the

parameters. However, the efficiency of Iβ1,ω

4,1 is higher than that of Qβ1
4,2 and the

operator proposed in [23] in terms of the number of evaluation points.
Moreover, Fig. 12 shows the interpolating splines Iβ1,ω

4,1 f1, Iβ1,ω

4,1 f2 and gives
nice surfaces. They are comparable with those obtained in [2] and in [23] (see the
figures there reported).

The approximation schemes here proposed have been developed to consider
functions defined on the real plane, but the test functions f1 and f2 are defined on
the unit square. To deal with triangles having a non interior vertex, the triangulation
is extended as well as f1 and f2.
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Fig. 12 The quartic C1 splines Iβ1,ω

4,1 f1 with h = 1/64 (left) and Iβ1,ω

4,1 f2 (right) with h = 1/256.

Their masks correspond to the values provided by β1 = 29
72 , ω = 0

6 Conclusions

In this paper, we have constructed and analysed C1 quartic interpolating splines on
type-1 triangulations, approximating regularly distributed data. A characteristic of
the proposed methodology is that the Bernstein-Bézier coefficients in each triangle
of the constructed quasi-interpolants are directly defined as appropriate linear
combinations of point values at domain points that lie in a neighbourhood of the
triangle to achieve C1 regularity and approximation order four for enough regular
functions. We have constructed such interpolating splines by combining a quasi-
interpolating spline with one step of an interpolatory subdivision scheme. Numerical
tests confirming the theoretical results have been provided for the proposed spline
scheme.

We remark that, the approximation schemes constructed in this paper and based
on regularly distributed point values can be used in two-stage methods, as in [9], by
firstly computing a polynomial approximant on each triangle and then by sampling
the necessary data values from the approximant on each triangle. Finally, in order to
apply the approximation schemes here proposed to compact domains, it is possible
to construct special rules near the boundary (see [21]) or extend the triangulation.
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Approximation with Conditionally
Positive Definite Kernels on Deficient Sets

Oleg Davydov

Abstract Interpolation and approximation of functionals with conditionally pos-
itive definite kernels is considered on sets of centers that are not determining
for polynomials. It is shown that polynomial consistence is sufficient in order to
define kernel-based numerical approximation of the functional with usual properties
of optimal recovery. Application examples include generation of sparse kernel-
based numerical differentiation formulas for the Laplacian on a grid and accurate
approximation of a function on an ellipse.

Keywords Conditionally positive definite kernels · Numerical differentiation ·
Optimal recovery · Saddle point problem

1 Introduction

Let Ω be a set and P a finite dimensional space of functions on Ω . A function K :
Ω×Ω → R is said to be a conditionally positive definite kernel with respect to P if
for any finite set X = {x1, . . . , xn} ⊂ Ω the quadratic form

∑n
i,j=1 cicjK(xi, xj )

is positive for all c ∈ Rn \ {0} such that
∑n
i=1 cip(xi) = 0 for all p ∈ P [9].

Given data (xj , fj ), j = 1, . . . , n, with xj ∈ Ω , fj ∈ R, a sum of the form

σ(x) =
n∑

j=1

cjK(x, xj )+ p̃, cj ∈ R, p̃ ∈ P (1)

can be used to solve the interpolation problem

σ(xi) = fi, i = 1, . . . , n. (2)

O. Davydov (�)
University of Giessen, Giessen, Germany
e-mail: oleg.davydov@math.uni-giessen.de

© Springer Nature Switzerland AG 2021
G. E. Fasshauer et al. (eds.), Approximation Theory XVI, Springer Proceedings in
Mathematics & Statistics 336, https://doi.org/10.1007/978-3-030-57464-2_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57464-2_3&domain=pdf
mailto:oleg.davydov@math.uni-giessen.de
https://doi.org/10.1007/978-3-030-57464-2_3


28 O. Davydov

Moreover, a solution of (2) satisfying the condition

n∑

j=1

cjp(xj ) = 0 for all p ∈ P, (3)

can always be found [9, p. 117]. This solution is unique if X is a determining set for
P , that is p ∈ P and p|X = 0 implies p = 0.

In meshless finite difference methods, conditionally positive definite kernels with
respect to spaces of polynomials are often used to produce numerical approxima-
tions of linear functionals

λf ≈
n∑

i=1

wif (xi), wi ∈ R, (4)

such as the value λf = Df (x) of a differential operator D applied to a function f
at a point x ∈ Ω . If the interpolant σ = σf satisfying (1)–(3) with fi = f (xi) is
uniquely defined, then the weights wi of (4) can be obtained by the approximation
λf ≈ λσf , which leads to the conditions

n∑

j=1

wjK(xi, xj )+ p̃(xi) = λ′K(xi), i = 1, . . . , n, for some p̃ ∈ P, (5)

n∑

i=1

wip(xi) = λp for all p ∈ P, (6)

where λ′K : Ω → R is the function obtained by applying λ to the first argument of
K . The weights wi are in this case uniquely determined by the conditions (5)–(6).
In particular, by introducing a basis for the space P , we can write both (1)–
(3) and (5)–(6) as systems of linear equations with the same matrix which is
non-singular as soon as X is a determining set for P . Solving this system is
the standard way to obtain the weights wi , see e.g. [7]. It is demonstrated in
[1] that the weights satisfying (5)–(6) for a polyharmonic kernel K significantly
improve the performance of meshless finite difference methods in comparison to the
weights obtained by unconditionally positive definite kernels such as the Gaussian.
In addition, these weights provide optimal recovery of λf from the data f (xi),
i = 1, . . . , n, on spaces of functions of finite smoothness, see e.g. [9, Chapter 13].

An alternative interpretation of (5)–(6) is that the approximation (4) of λf is
required to be exact for all f = σ in the form (1) with coefficients cj satisfying (3).
Indeed, this can be easily shown with the help of the Fredholm alternative for
matrices, see Theorem 1 below. In particular, (6) already expresses exactness of (4)
for all elements of P . In the case when Ω is a domain in Rd and P is a space
of d-variate polynomials, (6) can be used to obtain error bounds for the numerical
differentiation with weights wi , see e.g. [5, 6].
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However, exactness (6) for p ∈ P is sometimes achievable without X being
a determining set for P . We then say that X is P-consistent for λ. The best known
examples are the Gauss quadrature when λf = ∫ b

a
f (x) dx and the five point stencil

for the two-dimensional Laplacian. Moreover, P -consistent sets with n significantly
smaller than the dimension of P often can be used for the numerical discretization
of the Laplace operator on gridded nodes in irregular domains, leading to sparser
differentiation matrices [3].

In this paper we study numerical approximation formulas (4) obtained by
requiring exactness conditions (5)–(6) on “deficient” setsX that are not determining
for P .

Our main result (Theorem 2 and Corollary 1) shows that a unique formula
satisfying these conditions exists as soon asX is P -consistent. Another consequence
is that the coefficients cj of the interpolant (1) are uniquely defined for any X
(Corollary 2). Numerical differentiation formulas obtained in this way provide
optimal recovery on native spaces of the kernels. We also discuss computational
methods for the weights of the formula (4) and coefficients of the interpolant (1).
In particular, a null space method can be used for the saddle point problems (5)–(6)
or (1)–(3) even if in the case of deficient sets they do not satisfy restrictions usually
required in the literature [2].

In the last section we describe two types of deficient sets that arise naturally
in applications. First, deficient subsets of a grid may be used for numerical
differentiation of the Laplacian (Sect. 3.1). Second, function values and differential
operators on algebraic surfaces, in this case an ellipse, may be approximated using
data located on the manifold, which are necessarily deficient sets for polynomials in
the ambient space of degree at least the order of the surface (Sect. 3.2). In both cases,
numerical results demonstrate a robust performance of the suggested numerical
methods, and a reasonable approximation quality of the polyharmonic kernels we
employ in the experiments.

2 Approximation on Deficient Sets

We assume that K : Ω × Ω → R is a conditionally positive definite kernel with
respect to a linear space P of functions on Ω , with dimP = m. Let {p1, . . . , pm}
be a basis for P . By writing p̃ = ∑m

j=1 vjpj , vj ∈ R, conditions (5)–(6) give rise
to a linear system with respect to wj and vj , in block matrix form,

[
KX PX

PTX 0

]
·
[
w

v

]
=
[
a

b

]
, (7)

where

KX = [K(xi, xj )]ni,j=1, PX = [pj (xi)]n,mi,j=1,
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w = [wj ]nj=1, v = [vj ]mj=1, a = [λ′K(xi)]ni=1, b = [λpj ]mj=1.

Condition (3) in matrix form is

PTX c = 0, c = [cj ]nj=1,

that is c belongs to the null space N(PTX ) of PTX . Since

PXv = [p̃(xi)]ni=1, p̃ =
m∑

j=1

vjpj ,

we see that the condition thatX is a determining set for P is equivalent toN(PX) =
0.

We show that the conditions (5)–(6) express the exactness of (4) for the sums σ
conditional on (3), even when X is a deficient set for P , that is N(PX) �= 0. Recall
that this condition is equivalent to R(P TX ) �= Rm, where R(A) denotes the range of
a matrix A.

Theorem 1 Let X = {x1, . . . , xn} ⊂ Ω . An approximation formula (4) satisfies
the exactness condition λσ = ∑n

i=1wiσ(xi) for all sums σ in the form (1) with
coefficients cj satisfying (3) if and only if (5)–(6) holds for the weights wi , i =
1, . . . , n.

Proof The exactness condition is

n∑

j=1

cjλ
′K(xj )+ λp =

n∑

j=1

cj

n∑

i=1

wiK(xi, xj )+
n∑

i=1

wip(xi)

for all c = [cj ]nj=1 satisfying (3) and all p ∈ P . In particular, for c = 0 we
obtain (6), and rewrite the condition as

n∑

j=1

cj

(
λ′K(xj )−

n∑

i=1

wiK(xi, xj )
)
= 0 for all c ∈ N(PTX ).

By the Fredholm alternative for matrices this is equivalent to

[
λ′K(xj )−

n∑

i=1

wiK(xi, xj )
]n
j=1

∈ R(PX),

which is in turn equivalent to (5) in view of the symmetry of the kernel K . ��
Linear systems of the type (7) have been extensively studied under the name of

equilibrium equations [8, Section 4.4.6] or saddle point problems [2] because they
arise in many application areas. Our approach below is a variation of the null space
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techniques described in [2, Section 6]. However, usual assumptions that n ≥ m,KX
is positive semidefinite and PX has full column rank are not satisfied in our case of
interest.

As long as X is a deficient set, R(P TX ) �= Rm and hence the solvability of
PTXw = b cannot be guaranteed for all b. Nevertheless, should this last equation
have a solution for w, there is a unique weight vector w satisfying (7).

Theorem 2 There is a unique vector w satisfying (7) if and only if b ∈ R(P TX ).
Proof The necessity of the condition b ∈ R(PTX ) is obvious. To show the
sufficiency, assume that PTXw0 = b for some w0 ∈ Rn. Then the solution w must
satisfy PTX (w − w0) = 0 if it exists, so we look for w in the form

w = w0 + ũ, ũ ∈ N(PTX ).

LetM be a matrix whose columns form a basis for N(PTX ). Then ũ = Mu for some
vector u, and we may write (7) equivalently as a linear system with respect to u
and v,

KXMu+ PXv = a −KXw0. (8)

SinceMTPX = 0, it follows that

MTKXMu = MT (a −KXw0). (9)

Since K is conditionally positive definite, the matrix MTKXM is positive definite,
and hence there is a unique u determined by the last equation. The existence of some
v ∈ Rm such that (8) holds is equivalent to the claim that KXMu − a + KXw0 ∈
R(PX). This claim follows from the Fredholm alternative since (9) implies that
KXMu−a+KXw0 ⊥ N(PTX ). Thus, u and v satisfying (8) exist, and u is uniquely
determined. Then w = w0 +Mu is a unique vector satisfying (7). ��
Remark 1 Theorem 2 is valid for any linear system (7) with arbitrary matrices A
and B replacingKX and PX, respectively, and arbitrary a, b, as soon as A is definite
onN(BT ), that is xT Ax �= 0 for all x ∈ N(BT )\{0}. Indeed, this condition implies
thatMTAM is non-singular and hence the argument in the proof goes through.

As long as the condition b ∈ R(P TX ) is satisfied, the weight vector w may be
found by any solution method applicable to the system (7), for example via the
pseudoinverse of its matrix when it is singular. Alternatively, we may use the null
space matrixM of the above proof and find w from the linear system

[
MTKX

PTX

]
w =

[
MT a

b

]
, (10)
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which is in general overdetermined but has full rank because its solutionw is unique.
Indeed, any solution w of (10) satisfied (7) for some v since MTKXw = MT a

impliesKXw−a ⊥ N(PTX ) and thusKXw−a ∈ R(PX). We refer to [2, Section 6]
for the computational methods for the null space matrixM . One obvious possibility
is to employ the right singular vectors of PX, see [8, Eq. (2.5.4)]. Should v be
needed, it can be computed as a solution of the consistent linear system

PXv = a −KXw. (11)

For example we can use

v = P+X (a −KXw), (12)

where P+X denotes the Moore-Penrose pseudoinverse of PX, is the unique v with the
smallest 2-norm.

We formulate two immediate consequences of Theorem 2 for the numerical
approximation of functionals and for the interpolation. Note that (1)–(3) can be
written in the form (7) with w replaced by c, a = [fi]ni=1, and b = 0. In particular,
the condition 0 ∈ R(P TX ) of Theorem 2 is trivially satisfied.

Corollary 1 For any X and λ there is a unique numerical approximation for-
mula (4) satisfying (5)–(6) as soon as (6) is solvable.

Corollary 2 For any data (xj , fj ), j = 1, . . . , n, one or more interpolants σ
satisfying (1)–(3) exist and their coefficients cj , j = 1, . . . , n, are uniquely
determined.

Thanks to Theorem 1 we also obtain the property known for the case of a
determining set X that the approximation λf ≈ ∑n

i=1wif (xi) can be found by
requiring λf ≈ λσ for any interpolant σ of Corollary 2 with fi = f (xi).

Looking specifically at numerical differentiation, consider the case when Ω =
Rd , λf = Df (x) for a linear differential operator D of order k and x ∈ Rd ,
and P = Pdq , the space of d-variate polynomials of total order at most q
(that is, total degree at most q − 1) for some q ∈ N. Any kernel K that is
conditionally positive definite with respect to P generates a native semi-Hilbert
space F(K,P ) of functions on Ω with null space P , see e.g. [9]. By inspecting
the arguments in Section 2 and Lemma 6 of [4], we see that thanks to Corollary 1,
the optimal recovery property of the weightswi defined by (5)–(6) remains valid for
deficient sets X = {x1, . . . , xn}. More precisely, the worst case error of numerical
differentiation formulas on the unit ball of Fq(K) := F(K,Pdq),

E(u) := sup
f∈Fq (K)

‖f ‖Fq (K)≤1

∣∣Df (x)−
n∑

i=1

uif (xi)
∣∣,

can be computed as
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E2(u) = D′D′′K(x, x)−
n∑

i=1

ui
(
D′K(x, xi)+D′′K(xi, x)

)

+
n∑

i,j=1

uiujK(xi, xj ).

(13)

The weight vector w has the optimal recovery property in the sense that it satisfies

E(w) = min
{
E(u) : u ∈ Rn, Dp(x) =

n∑

i=1

uip(xi) for all p ∈ Pdq
}

(14)

as soon as the mixed partial derivatives of K exist at (x, x) ∈ Rd × Rd up to the
order k in each of both d-dimensional variables, and X is such that there exists a
vector u ∈ Rn with polynomial exactness

Dp(x) =
n∑

i=1

uip(xi) for all p ∈ Pdq .

We use hereD′ andD′′ to indicate when λf = Df (x) acts on the first, respectively,
the second argument of K .

Note that the equality-constrained quadratic minimization problem (14) provides
an alternative way of computing the optimal weight vector on a deficient set. By
Theorem 2 we know that its solution w is unique as soon as the feasible region is
non-empty.

3 Examples

In this section we illustrate Corollaries 1 and 2 on particular examples where
deficient sets X seem useful.

We consider the polyharmonic kernelsKs,d : Rd ×Rd → R, defined for all real
s > 0 by Ks,d(x, y) = ϕs(‖x − y‖2), where

ϕs(r) := (−1)�s/2�+1
{
rs log r, if s is an even integer,
rs, otherwise.

(15)

The kernel Ks,d is conditionally positive definite with respect to Pdq for all q ≥
�s/2� + 1. We cite [6, 9] and references therein for further information on these
kernels. If m = (s + d)/2 is an integer and q is chosen equal to m, then the native
space Fm(Ks,d) coincides with the Beppo-Levi space BLm(Rd), see [9, Theorem
10.43]. For any q ≥ �s/2� + 1, the space Fq(Ks,d) can be described with the help
of the generalized Fourier transforms as in [9, Theorem 10.21]. By the arguments in
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Sect. 2, formulas (13) and (14) apply toKs,d as soon as s > 2k, where k is the order
of the differential operator D.

3.1 Numerical Differentiation of Laplacian on a Grid

We are looking for numerical differentiation formulas of the type

Δf (0) ≈
∑

α∈Zd,r
wαf (α), Zd,r := {α ∈ Zd : ‖α‖2 ≤ r}, r > 0, (16)

whereΔ is the LaplacianΔf =∑d
i=1 ∂

2f /∂x2
i . The setZd,r for 0 ≤ r < 1 consists

of the origin only and hence is not useful for the approximation of the Laplacian.
For r = 1 we have Zd,1 = {0,±e1, . . .± ed}, where ei is the i-th unit vector in Rd ,
and

Δf (0) ≈ −2df (0)+
d∑

i=1

f (ei)+
d∑

i=1

f (−ei) (17)

is the classical numerical differentiation formula exact for all cubic polynomials
f = p ∈ Pd4 . Hence (6) is solvable for all X = Zd,r , r ≥ 1, if P = Pd4 .

According to Corollary 1, we have computed the unique weights of the for-
mula (16) satisfying (5)–(6) for the kernel K7,d , P = Pd4 and X = Zd,r for
all d = 2, . . . , 5 and r = 1,

√
2,
√

3, 2. As a basis for Pd4 we choose ordinary
monomials. However, the computation is performed using the rescaling of X as
X/r according to the suggestion in [5, Section 6.1]

Table 1 presents information about the size |X| of X, dimensions of the null
spaces of PX and PTX , the optimal recovery error (14) on F4(K7,d ), the stability
constant of the weight vector ‖w‖1 = ∑n

i=1 |wi |, and the condition number cond
of the system (10) we solved in order to compute the weights for r �= 1. A smaller
optimal recovery error indicates better approximation quality, whereas ‖w‖1 and
cond measure the numerical stability of the formulas. Note that dimN(PTX ) = 0
for r = 1, which means that (17) is the only solution of (6) in this case, and hence
it provides the optimal recovery on F4(K7,d ). For r = 2 we have dimN(PX) = 0
and it follows that Zd,2 is a determining set for Pd4 . For r = √

2,
√

3 we obtain
examples of optimal recovery weights on deficient sets, with dimN(PX) being the
dimension of the affine space of weight vectors satisfying the polynomial exactness
condition (6). These new weights seem to provide a meaningful choice for the two
intermediate sets between the classical polynomial stencil on Zd,1, and the standard
polyharmonic weights on the determining set Zd,2. Indeed, as expected, the optimal
recovery error E(w) reduces when |X| increases, whereas the stability constant and
condition numbers tend to increase.
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Table 1 Numerical
differentiation of Laplacian
on a grid: |X| is the
cardinality of X,
dN = dimN(PX),
dNt = dimN(PTX ), E(w) is
given by (13), and cond is the
condition number of the
matrix of (10)

r |X| dN dNt E(w) ‖w‖1 cond

d = 2, X = Z2,r , dimP2
4 = 10

1 5 5 0 13.4 8.0 –√
2 9 2 1 10.6 13.5 2.0e+02√
3 9 2 1 10.6 13.5 2.0e+02

2 13 0 3 7.4 11.8 3.9e+02

d = 3, X = Z3,r , dimP3
4 = 20

1 7 13 0 17.2 12.0 –√
2 19 4 3 12.3 22.7 3.8e+02√
3 27 3 10 12.4 24.8 2.5e+03

2 33 0 13 9.0 30.1 5.1e+03

d = 4, X = Z4,r , dimP4
4 = 35

1 9 26 0 20.8 16.0 –√
2 33 8 6 14.0 31.8 5.7e+02√
3 65 4 34 13.9 39.7 6.9e+03

2 89 0 54 10.4 40.5 3.1e+04

d = 5, X = Z5,r , dimP5
4 = 56

1 11 45 0 24.2 20.0 –√
2 51 15 10 15.6 40.9 7.7e+02√
3 131 5 80 15.4 56.4 1.3e+04

2 221 0 165 11.7 55.0 9.0e+04

3.2 Interpolation of Data on Ellipse

In this example we compute the kernel interpolant (1) satisfying (3) and σ(xi) =
f (xi), i = 1, . . . , n, for the test function f : R2 → R given by

f (x, y) = sin(πx) sin(πy).

We use the polyharmonic kernels Ks,2 and P = P2
q for the pairs

(s, q) = (5, 3), (7, 4), (9, 5),
and choose sets X with n = |X| = 5 · 2i , i = 0, 1, . . . 6, on the ellipse E with
half-axes a = 1 and b = 0.75 centered at the origin. The sets are obtained by
first choosing parameter values ti = ih, i = 0, . . . , n − 1, where h = 2π/n,
then adding to each ti a random number εi with uniform distribution in the interval
[−0.3h, 0.3h], and selecting xi =

(
a cos(ti + εi), b sin(ti + εi)

)
. The first two sets

used in our experiments are shown in Fig. 1.
Since X ⊂ E and there exists a nontrivial quadratic polynomial p ∈ P2

3 that
vanishes on E ,

p(x, y) = x2/a2 + y2/b2 − 1,
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Fig. 1 Interpolation of data on ellipse: The sets X with |X| = 5 (left) and 10 (right)

all sets X are deficient for P2
q , q ≥ 3. Nevertheless, according to Corollary 2,

the coefficients cj of the interpolant σ in (1) are uniquely determined and can be
computed by solving the system (10). A polynomial p̃ of (1), p̃ = v1p1 + · · · +
vmpm, can be computed by solving (11). We will use the pseudoinverse as in (12),
but in fact the polynomial p̃ is uniquely determined on the ellipse E as soon as n ≥
2q−1. Indeed, if both p̃1, p̃2 ∈ P2

q satisfy (11), and p̃1− p̃2 = u1p1+· · ·+umpm,
then PXu = 0, which implies (p̃1 − p̃2)|X = 0. Hence x1, . . . , xn are intersection
points of the ellipse and the zero curve of p̃1− p̃2, an algebraic curve of order q−1.
By Bezout theorem, this curve must contain E as soon as n > 2(q − 1), which
implies p̃1|E = p̃2|E .

Thus, σ |E is well defined as soon as |X| ≥ 5 for q = 3, |X| ≥ 7 for q = 4
and |X| ≥ 9 for q = 5. We are using σ(x) as an approximation of f (x) for x ∈ E .
Moreover, we also approximate the surface gradient

∇Ef (x) := ∇f (x)− ∇f (x)T ν(x) · ν(x), x ∈ E,

where ν(x) is the unit outer normal to E at x. The surface gradient ∇Ef (x)
can either be approximated by ∇Eσ(x), or by using a numerical differentiation
formula (4), with the same result. For each X, except of |X| = 5 for q = 4, 5,
we evaluated the maximum error of the function and surface gradient,

max = max
x∈E

|f (x)− σ(x)|,
maxg = max

x∈E
‖∇Ef (x)−∇Eσ(x)‖2,

by sampling the parameter t of the ellipse
(
a cos t, b sin t

)
, t ∈ [0, 2π), equidistantly

with the step h/20. The results are presented in Table 2, where we also included
the condition number cond of the system (10). Note that we translate and scale X
using its center of gravity z, and perform the computations with Ks,2 and ordinary
monomials on the set Y = (X − z)/max{‖xi − z‖2 : i = 1, . . . , n}, in order
to improve the condition numbers. The results in the table demonstrate a fast
convergence of the interpolant σ and its surface gradient to f and ∇Ef . Note
that although the condition numbers become high when the set X fills the ellipse
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more densely, they are moderate in comparison to significantly worse conditioned
matrices arising if infinitely smooth kernels such as the Gaussian KG,ε(x − y) =
exp(−ε‖x − y‖2

2), ε > 0, are employed, see also discussions in [7, Section 5.1.5].
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Non-stationary Subdivision Schemes:
State of the Art and Perspectives

Costanza Conti and Nira Dyn

Abstract This paper reviews the state of the art of non-stationary subdivision
schemes, which are iterative procedures for generating smooth objects from discrete
data, by repeated level dependent linear refinements. In particular the paper
emphasises the potentiality of these schemes and the wide perspective they open, in
comparison with stationary schemes based on level-independent linear refinements.

Keywords Subdivision schemes · Linear operators · Non-stationary schemes ·
Generation/reproduction of exponential polynomials · Analysis of
convergence/smoothness

1 Introduction

Subdivision schemes were created originally to design geometrical models (see [4,
6, 30, 35],) but very soon they were recognised as methods for approximation (see
[5, 36]). They are iterative methods for the generation of sets of points based on
refinement rules that can be easily and efficiently implemented on a computer.

Since the 90s, subdivision schemes attracted many scientists for both the
simplicity of their basic ideas and the mathematical elegance emerging in their
analysis: they are defined by repeatedly applying simple and local refinement rules
which have been extended to refine other objects such as vectors, matrices, manifold
data, sets of points, curves, nets of functions. Therefore, the domain of application
of subdivision is vast and they emerge in different contexts ranging from computer
animation [31] to motion analysis [57].
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The most studied subdivision schemes are linear and stationary (level indepen-
dent). A nice aspect of linear subdivision schemes is that many of their properties
can be translated into algebraic properties of Laurent polynomials. This makes their
analysis easy and efficient. Moreover, since these schemes can be viewed as repeated
multiplication by matrices, many analysis tools are based on linear algebra such as
the “joint spectral radius” of two matrices (see [61]). Linear subdivision schemes
are the subject of this survey paper. First we review the stationary schemes, and
then in more details the non-stationary ones.

Stationary schemes are characterised by repeatedly applying the same simple and
local refinement rule while the non-stationary (or level dependent) schemes apply
a different rule in each level of refinement. Yet, changing rules with the levels is
not a big difference from an implementation point of view, also in consideration
that, realistically, only few subdivision iterations are executed. Contrary, from a
theoretical point of view, non-stationary schemes are certainly more difficult to
analyse. Level-dependent schemes were introduced to augment the class of limit
functions defined through stationary schemes. For example, they allow the definition
of C∞ compactly supported functions like the Rvachev function (see, e.g. [39]) or
exponential B-splines.

This type of limits shows that non-stationary schemes alleviate the limitations of
stationary schemes that the smoothness of their limits of minimal compact support
is bounded by the size of that support.

The non-stationary schemes are essentially different from the stationary ones:
non-stationary schemes are able to generate conic sections, or to deal with level-
dependent tension parameters for modifying the shape of a subdivision limit,
while the stationary ones are not. An example of level-dependent subdivision
schemes is given by Hermite schemes that allow to model curves and surfaces
involving their gradient fields. They are interesting both in geometric modelling
and biological imaging [1, 2, 14, 24, 65]. Additionally, non-stationary subdivision
schemes play a role in the construction of non-stationary wavelet and framelets
whose adaptivity makes them more flexible (see [13, 26, 42, 46, 67]). Last, but not
least, level-dependent rules have the potential to overcome the standard limitations
of subdivision surfaces such as artefacts and low regularity at extraordinary
vertices/faces (see [64] for the limitations).

The paper is organised as follows: Sect. 2 provides a general description of the
subdivision ideas together with classical examples of univariate and bivariate linear
and stationary subdivision schemes. Also, the section presents a short description
of the main subdivision applications and a review of the analysis tools of stationary
linear schemes. Then, in Sect. 3 non-stationary subdivision schemes are discussed
with emphasis on the motivation for their use. Section 4 is devoted to the analysis
tools specific for non-stationary subdivision schemes, while the closing Sect. 5
presents open problems in the non-stationary setting.
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2 Classical Subdivision Schemes

Subdivision schemes are efficient iterative methods for generating limit objects from
discrete sets of data: Given D0—an initial set of data—the procedure iteratively
defines a sequence of denser and denser sets of data {Dk}k≥0

D0 −→︸︷︷︸
ref. rule

D1 −→︸︷︷︸
ref. rule

D2 · · · −→︸︷︷︸
ref. rule

Dk

by suitable refinement rules which can be linear or non-linear, level dependent or
level independent, given by a formula or a geometric construction, just to mention
some possibilities. Whenever limk→∞ Dk exists, in a sense to be explained later, it
is the subdivision limit generated by the scheme.

At the early stage of the study of subdivision schemes, the initial set D0 consisted
mainly of points, but in the last 30 years, subdivision was extended to more abstract
settings, such as vector fields, manifold valued data, matrices, sets, curves or nets
of functions. Examples of different possibilities are shown in the next figures after
three refinement steps of a point subdivision scheme, a net subdivision scheme and
a mesh subdivision scheme, respectively (Figs. 1, 2, 3).
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Fig. 1 Example of refinement of real values with limit a bivariate function
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Fig. 3 Example of refinement of meshes with limit a surface

2.1 Binary, Linear, and Stationary Subdivision Schemes

The classical schemes are binary, linear, and stationary. We start with univariate
schemes refining sequences of real values or of points in R

d . The extension to the
refinement of real values or of points given at the vertices of a regular mesh is the
first step towards the bivariate case, which is of great importance for the generation
of smooth surfaces.

Given a mask consisting of a finite set of real coefficients a = {ai, i ∈ I }, I ⊂
Z, | I | < ∞, the associated linear subdivision operator transforming a sequence p
of points in R into a refined sequence of points in R is

Sa : �(Z)→ �(Z) (Sa(p))i :=
∑

j∈Z
ai−2jpj , j ∈ Z. (1)

The refinement rule (1) encompasses two rules, one for the even indices, and one
for the odd indices

(Sa(p))2i :=
∑

j∈Z
a2jpi−j , (Sa(p))2i+1 :=

∑

j∈Z
a2j+1pi−j , j ∈ Z.

In the following, without loss of generality, we assume that I = {0, . . . , N}, for
some N ∈ N.

The subdivision scheme is simply the repeated application of the subdivision
operator starting from an initial sequence of points p[0]:

⎧
⎨

⎩

Input a, p[0]
For k = 0, 1, . . .

p[k+1] := Sap
[k]

(2)

The points in the sequence p[k] = {p[k]i }i∈Z are attached to the parametrization

{t [k]i }i∈Z (t [k]i < t
[k]
i+1, i ∈ Z), namely p[k]i is attached to the parameter value t [k]i .
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The scheme defined in (2), also denoted by Sa, is called convergent if for any p[0]
there exists a continuous function fp[0] , such that

lim
k→∞ sup

i∈Z
| fp[0](t

[k]
i )− p[k]i | = 0, (3)

with fp[0] �≡ 0 for at leat one initial sequence p[0] �≡ 0. The limit is also denoted by
S∞a (p[0]). In case the limit function fp[0] is a C� function for any p[0] the scheme is
said to be C�-regular.

We will restrict our attention to non singular subdivision schemes, i.e. convergent
schemes such that

S∞(p[0]) ≡ 0 ⇔ p
[0]
i = 0 for all i ∈ Z.

The limit obtained starting with the delta-sequence δ = {δ0,i}i∈Z, φa := S∞a (δ),
usually called the basic limit function of the scheme, is of great importance. Indeed,
by the linearity of the operator Sa we have that

fp[0] =
∑

j∈Z
p
[0]
j φa(· − j). (4)

Thus, the smoothness of the scheme Sa is the smoothness of its basic limit function.
Most classical subdivision schemes are either primal or dual. In the primal

case at each iteration the scheme retains or modifies the ‘old’ points and creates
a ‘new’ point situated in the sequence in between two consecutive ‘old’ ones. In
the dual case, Sa discards all given points after creating two new ones in between
any pair of consecutive ‘old’ points. Algebraically, this is related to the choice of
the parameters to which we attach the points generated by the scheme: the primal
parametrization is such that tki = i 2−k for k ≥ 1 and t [0]i = i, i ∈ Z, while in the

dual one t [k]i = (i − 1
2 ) 2−k for k ≥ 1 and t [0]i = i, i ∈ Z. To unify the primal and

the dual cases, we here consider the parameter values t [k]i = (i + τ) 2−k for k ≥ 1

and t [0]i = i, i ∈ Z and call τ the parametric shift of the scheme. Note that in view
of (1) and the parametrizations of the primal and dual cases, the support of φa is
contained in [0, N] (see e.g. [39]).

The parameterization is important for example when considering reproduction
capabilities of subdivision schemes, discussed next.

A convergent subdivision scheme Sa with parameter shift τ reproduces a function
space V , if for any g ∈ V , the initial sequence

p[0] := {g(j + τ) ∈ R}j∈Z (5)

guarantees that S∞a (p[0]) ≡ g. Moreover it stepwise reproduces V if at each step k,
the refined sequence p[k] is of the form



44 C. Conti and N. Dyn

p[k] = {g((j + τ) 2−k)}j∈Z, for all k ≥ 1. (6)

From the above it obviously follows that stepwise-V-reproduction implies V-
reproduction in case convergence is guaranteed.

Reproduction of polynomials of degree less or equal to n, namely corresponding
to V ≡ Πn, is closely related to the approximation order of the subdivision
scheme Sa. The approximation order measures the rate by which the limit functions
generated by Sa (from initial data sampled from a sufficiently smooth function
f ) get closer to f as the sampling density tends to zero. In other words, the
approximation order of Sa is the largest exponent r such that for all f ∈ Cr

‖f − S∞a (f[0])(
·
h
)‖∞ ≤ c hr , for f[0] = {f (ih)}i∈Z,

with c a constant independent of h.
It is easy to prove that subdivision schemes that reproducesΠn have approximation
order r = n+ 1 (see the proof in [37] for the 4-point scheme).

A weaker notion of reproduction is the notion of generation of a function space
V: It guarantees that for any g ∈ V and initial sequence (5)

Sa(p[0]) ∈ V . (7)

The generation of Πn by Sa is a necessary condition for the scheme to be Cn-
regular when φa is L∞-stable (see [39, Theorem 4.16 and (4.20)]), namely when
C1‖b‖L∞ ≤ ‖

∑
α∈Z bαφa(· − α)‖L∞ ≤ C2‖b‖L∞ with C1, C2 positive constants

independent of b = {bα}α∈Z.
Extension of the univariate case to dimensions s ≥ 2 is straightforward when the

topology is that of the regular mesh Z
s . Here we consider the case d = 2.

Bivariate linear, stationary and binary subdivision operators for regular meshes
are defined similarly to (1) as

Sa : �(Z2)→ �(Z2) (Sa(p))α =
∑

β∈Z2

aα−2βpβ, α ∈ Z
2. (8)

In (8) there are four different refinement rules determined by the parity of the indices
α = (α1, α2) ∈ Z

2. Hence, an equivalent form of (8) is

(Sa(p))2α+ε =
∑

β∈Z2

a2β+εpα−β, α ∈ Z
2, ε ∈ Ξ2,

where

Ξ2 = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, (9)
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is the set of representative indices of a binary scheme. The subdivision limit is still
a linear combination of shifts of its bivariate basic limit function

fp[0] =
∑

β∈Z2

p
[0]
β φa(· − β), for φa := S∞a (δ), (10)

with δ = {δ0,α, α ∈ Z
2} a bivariate sequence. The notions of convergence,

regularity, generation, reproduction and approximation order are essentially the
same as in the univariate case.

2.2 Examples of Subdivision Schemes

A famous example of univariate subdivision scheme is the Chaikin scheme [6] based
on the simple rules

p
[k+1]
2i = 1

4
p
[k]
i−1 +

3

4
p
[k]
i p

[k+1]
2i+1 =

3

4
p
[k]
i + 1

4
p
[k]
i+1, i ∈ Z, (11)

corresponding to the mask

a = {1
4
,

3

4
,

3

4
,

1

4
}. (12)

Figures 4 and 5 show the application of the rules in (11) to the initial δ-sequence
and the component-wise application of the same rules to 2D initial points. A ‘corner
cutting’ effect is evident.

Fig. 4 Three steps of the subdivision in (11) with initial points (in magenta)

Fig. 5 Application of Chaikin scheme to 2D-initial points



46 C. Conti and N. Dyn

The Chaikin scheme is a quadratic spline subdivision scheme. Indeed, any
degree-n spline with integer knots and smoothness Cn−1 can be obtained as the
limit of a subdivision scheme based on the rules

p
[k+1]
2i =

∑

j∈Z

1

2n

(
n+ 1

2j

)
p
[k]
i−j , p

[k+1]
2i+1 =

∑

j∈Z

1

2n

(
n+ 1

2j + 1

)
p
[k]
i−j , i ∈ Z.

(13)
The rules in (13) correspond to the masks

an = { 1

2n

(
n+ 1

i

)
, i = 0, . . . , n}, (14)

and reduce for n = 2 to (11) while (14) reduces to (12). For odd n the schemes are
primal and for even n they are dual.
The regularity, polynomial reproduction and approximation order of spline subdivi-
sion schemes are known to be Cn−1, Π0 and r = 1, respectively. Note that, placing
the masks of the primal spline schemes symmetric relative to the origin, namely
a−i = ai, i = 0, · · · , n+1

2 the schemes produce Π1, hence their approximation
order is r = 2.

Important examples of subdivision schemes are interpolatory schemes where, for
all k, p[k] is contained in p[k+1], so that the limit function is interpolating the input
points. In contrast, the other types of schemes are called approximating.

A popular univariate example is the interpolatory 4-point scheme with rules

p
[k+1]
2i = p[k]i , p

[k]
2i+1 = −

1

16
p
[k]
i−2+

9

16
p
[k]
i−1+

9

16
p
[k]
i −

1

16
p
[k]
i+1, i ∈ Z, (15)

corresponding to the mask

a = {− 1

16
, 0,

9

16
, 1,

9

16
, 0,− 1

16
}. (16)

The four point scheme reproduces the polynomial space Π3, is C1 and has
approximation order r = 4. It is a special instance of the family of 4-point schemes
with tension parameter (see [37]) corresponding to w = 1

16 and of the family of
the interpolatory 2n + 2-point schemes proposed by Dubuc-Deslauriers in [32]
corresponding to n = 1. The schemes in the latter family (DD-family) have the
refinement rules

p
[k+1]
2i =p[k]i , p[k]2i+1=

n∑

j=−n−1

(−1)j (n+ 1)

24n+1(2j + 1)

(
2n+ 1

n

)(
2n+ 1

n+ j+1

)
p
[k]
i−j , i ∈ Z,

(17)
with mask
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Fig. 6 Three steps of the scheme with rules (15) with initial points δ (in magenta)

Fig. 7 One application of the 4-point scheme to 2D-initial points

an = { (−1)n(n+1)
24n+1(2n+1)

(2n+1
n

)
, · · · , 0, n+1

24n+1

(2n+1
n

)(2n+1
n

)
, 1,

n+1
24n+1

(2n+1
n

)(2n
n

)
, 0, · · · , (−1)n(n+1)

24n+1(2n+1)

(2n+1
n

)}.
(18)

It is easy to conclude from (17), that the scheme is based on n + 1 points
corresponding to the n+ 1 consecutive integer parameters on each side of i + 1

2 .
The DD 2(n+ 1)-point scheme reproduces the polynomial spaceΠ2n+1 and has

approximation order r = 2n+ 2.
Figures 6 and 7 show the application of the rules in (15) to the δ initial sequence

and the component-wise application of the same rules to the same 2D-initial points
as in Fig. 5. The ‘interpolation’ effect is evident.

In the bivariate setting, two well known approximating subdivision schemes are
the Doo-Sabin scheme and the Loop scheme. In the regular situation, namely when
the meshes are 2−kZ2, k ≥ 0, the first one is a tensor product of the Chaikin scheme
while the second one is associated with the three direction box-splines defined by
the directions (1, 0), (0, 1), (1, 1) repeated twice. The masks of these two schemes
are respectively given in terms of the matrices as

a =

⎛

⎜⎜⎝

1
16

3
16

3
16

1
16

3
16

9
16

9
16

3
16

3
16

9
16

9
16

3
16

1
16

3
16

3
16

1
16

⎞

⎟⎟⎠ and a =

⎛

⎜⎜⎜⎜⎜⎝

0 0 1
16

1
8

1
16

0 1
8

3
8

3
8

1
8

1
16

3
8

5
8

3
8

1
16

1
8

3
8

3
8

1
8 0

1
16

1
8

1
16 0 0

⎞

⎟⎟⎟⎟⎟⎠
. (19)

Figures 8 and 9 show the first and the second iteration of the rules based on the
masks in (19) to the initial δ-sequence.

A bivariate interpolatory subdivision scheme related to the four point scheme is
the butterfly scheme. The mask of the butterfly scheme is
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Fig. 8 Second and third iteration of Doo-Sabin scheme applied to the bivariate δ

Fig. 9 Second and third iteration of Loop scheme applied to the bivariate δ

a =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 − 1
16 − 1

16 0
0 0 − 1

16 0 2
16 0 − 1

16
0 − 1

16
2
16

8
16

8
16

2
16 − 1

16
0 0 8

16 1 8
16 0 0

− 1
16

2
16

8
16

8
16

2
16 − 1

16 0
− 1

16 0 2
16 0 − 1

16 0 0
0 − 1

16 − 1
16 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

Figure 10 shows the first and the second iteration of the Butterfly scheme applied
to the bivariate δ. More complicated examples of interpolatory subdivision schemes
can be found in [25], for example.

2.3 Main Applications

Subdivision schemes have a vast variety of applications. The most known is
certainly in geometric modelling and computer aided geometric design (CAGD)
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Fig. 10 Second and third iteration of the Butterfly scheme applied to the initial sequence δ

where they are used for the design of smooth curves and smooth surfaces of arbitrary
topology. As already mentioned, other applications include construction of refinable
functions, multiresolution and wavelets, image analysis through the generation of
active contours and active surfaces, computer animation, isogeometric analysis and
multigrid.

In the next two subsections we will briefly sketch the first two domains of
application while application to image analysis is the subject of Sect. 3.3.

2.3.1 Geometric Modelling and CAGD

In the examples of Sect. 2.2 univariate subdivision schemes generate curves from
an initial set of 2D points. Passing from curves to surfaces the setup becomes much
more complicated since the topological relations between the data are richer than in
the curve case (i.e., in the univariate case). In the surface case, a subdivision scheme
deals with refinement of meshes consisting of vertices, faces and edges. The vertices
are points in 3D, the edges are pairs of vertices, and the faces are cyclic sets of edges
(see Fig. 11).

Therefore, each subdivision scheme for surface generation in based on two
refinement rules. A topological refinement rule describing the modification of the
connectivity of the mesh with the added vertices and geometric refinement rules that
describe where the new vertices, are located in 3D. In a mesh faces and vertices are
classified by the so-called vertex and face valence: The valence of a face counts
the number of edges that delimit it whereas the valence of a vertex is the number of
edges incident to it. Quadrilateral meshes consist of faces with valence 4 and regular
vertices are of valence 4. In a triangular mesh all faces are triangles, and the regular
vertices have valence 6. In a mesh with most faces and vertices of valence 4, the rest
of the faces and vertices are the irregular ones. Similarly, in a mesh with most faces
triangles and vertices of valence 6, the rest of the faces and vertices are the irregular
ones. A mesh/region is called a regular mesh/region where all vertices and faces are
regular. Non-regular vertices/faces are extraordinary and a mesh containing them is
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Fig. 11 A schematical representation of a mesh

said to be irregular. It is important to note that irregular meshes are necessary for
the generation of surfaces of arbitrary topology.

The presence of an irregular element requires the definition of specific rules
depending on the valence of the irregular element. The Doo-Sabin scheme and
the Loop scheme provide rules for irregular vertices as well as the Catmull-Clark
scheme (a tensor product cubic spline scheme in irregular regions). For details about
subdivision schemes for surfaces we refer to the books [64, 68].

2.3.2 Generation of Refinable Functions and Wavelets

The link between subdivision schemes and wavelets is in the refinability property
of basic limit functions. Indeed, any φa = S∞a (δ) is refinable namely it satisfies the
refinement equation

φa =
∑

α∈Zs
aαφa(2 · −α), s ∈ {1, 2}, (21)

with {aα}α∈Zs the elements of the mask a. Equation (21) follows from
(Saδ)α = aα, α ∈ Z

s and from (4) and (10) for s = 1, 2, respectively.
Equation (21) is the crucial ingredient to generate multiresolution analysis

and wavelets even if, in most cases, the explicit expression of φa is unknown.
Nevertheless, several numerical procedures are possible for its computation. For
example, in the univariate case (s = 1) using the refinement equation (21) k-times
we easily see that

φa =
∑

i∈Z
a
[k]
i φa(2

k ·−i), where a[0] := a and a[�] := Saa[�−1], � = 1, · · · , k.

Therefore, the computation of φa at the dyadic points j2−k, j ∈ Z is simply the
convolution of the sequence a[k] with values of φa. Note that φa(i) �= 0 only for
i = 1, . . . N − 1 since the support of φa is contained in [0, N ] assuming that a =
{a0, . . . , aN })and φa is continuous. Therefore, for v = [φa(1), . . . , φa(N − 1)], we
have

Av = v, with Ai,j = a2i−j , i, j = 1, . . . , N − 1.
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An alternative method for the computation of φa is the so called cascade algorithm,
involving the repeated application of the operator Ta,

Tag =
∑

α∈Zs
aαg(2 · −α), s ∈ {1, 2}.

Choosing as initial ‘guess’ any continuous compactly supported function ψ0
satisfying

∑
α∈Zs ψ0(x − 1) ≡ 1, the cascade algorithm generates the sequence

{ψk}k≥0 by repeated application of Ta, namely ψk+1 = Taψk, k ≥ 0, and it
converges to φa.

We remark that the operator Ta is adjoint of Sa in the following sense:

∑

α∈Zs
(Sa(p))αf (2 · −α) =

∑

α∈Zs
pα(Ta(f )(· − α),

for any continuous and compactly supported function f and for any finitely
supported sequence p.

We can also calculate the Fourier transform φ̂a. Indeed, taking the Fourier
transform of the refinement equation (21) we find

φ̂a(ξ) = Ha(
ξ

2
)φ̂a(

ξ

2
), (22)

where Ha(ξ) = 1
2s

∑

α∈Zs
a�e

2πi �ξ is a trigonometric polynomial, due to the finite

support of the mask a. By repeated application of (22), we arrive at

φ̂a(ξ) =
∞∏

k=1

Ha(
ξ

2k
). (23)

Orthonormal wavelets are derived from refinable functions whose integer shifts
are orthonormal. Such refinable functions are defined by subdivision schemes
with masks having special properties. These masks are closely related to masks
of interpolating schemes. In particular the mask of the DD family are related to
Daubechies orthonormal wavelets of compact support [27].

2.4 Analysis Tools

In this section we shortly review analysis tools for linear stationary subdivision
schemes. As it can be observed in this section, in spite of the simplicity of the
subdivision idea, analyzing convergence and regularity can be difficult. Indeed,
even if the linearity of the operators allow for the use of linear algebra, e.g. joint
spectral radius or eigen-analysis, these problems can be NP hard. On the contrary,
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the analysis of polynomial reproduction, approximation order and smoothing factors
are based on elementary algebraic tools and are much simpler.

Certainly, an advantage of the uniform framework (i.e. dealing with uniformly
distributed data) characterising ‘classical’ subdivision schemes, is that we can
make use of standard mathematical tools of signal processing (e.g. discrete-time
Fourier transform and z-transform) which simplify all formulations and derivations
considerably. Indeed, a special role is played by the subdivision symbol, the Laurent
polynomial with coefficients the elements of the mask a, i.e.

A(z) =
∑

α∈Zs
aαzα, z ∈ C

s \ {0}, s = {1, 2}. (24)

With the symbols the kth subdivision step reads as

P [k+1](z) = A(z)P [k](z2), where P [k](z) =
∑

α∈Zs
p[k]α zα, k ≥ 0.

Polynomial generation and reproduction translate into algebraic conditions on the
subdivision symbol and its derivatives at the points of

Ξ ′s = {e−iπ ε, ε ∈ Ξs} ≡ {−1, 1}s , s ∈ {1, 2}. (25)

With the help of the auxiliary polynomials

q0(z) := 1, qj(z) :=
s∏

i=1

ji−1∏

�i=0

(zi − �i), j ∈ N
s
0, s ∈ {1, 2}, (26)

the polynomial generation/reproduction results are stated in the following propo-
sition (see [8] for details). To state the proposition, we introduce the notion of a
non-singular subdivision scheme, which is a scheme that generates zero limits if
and only if the initial data is a zero sequence.

Proposition 1 ([8, Theorem 2.6]) Let Sa be a convergent and non-singular subdi-
vision scheme with mask a and symbol A(z). It generates polynomials of degree up
to n, n ∈ N0, if and only if

A(1s) = 2s ,
(
DjA

)
(ε) = 0 for ε ∈ Ξ ′s \ 1s , |j| ≤ n , (27)

where Dj is the j-th directional derivative (j ∈ Z
s) and 1s = (1, · · · , 1) ∈ Z

s .
Moreover, for a given parameter shift τ ∈ R

s , it reproduces polynomials of
degree up to k if and only if

(
DjA

)
(1s) = 2sqj(τ ) and

(
DjA

)
(ε) = 0 for ε ∈ Ξ ′s \ 1s , |j| ≤ n .
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Also, Πn-reproduction implies approximation order n+ 1.

We remark that the algebraic conditions (27) are also called sum rules of order n
or zero-conditions (see e.g. [47]) and [18], respectively).

Still of algebraic type is the investigation of existence of ‘difference schemes’ and
‘smoothing factors’ useful for the smoothness analysis of the basic limit functions.
In the univariate setting (s = 1), a symbol contains k smoothing factors if there
exists a Laurent polynomial B(z) such that

A(z) =
(

1+ z
2

)k
B(z).

The regularity of the scheme Sa is at least k, if the scheme associate with the symbol
B(z) is convergent. A scheme Sa is convergent if and only if its symbol has the form
A(z) = (1+z)B(z) and the scheme Sb with symbol B(z) is contractive. A sufficient
condition for that is (see e.g. [39])

max{
∑

i ∈Z
|b2i |,

∑

i ∈Z
|b2i+1|} < 1.

In the bivariate situation, the construction of a difference scheme and the link
between smoothing factors and smoothness of the limit is definitely more involved
(see, [12], for example). To simplify, we can say that the existence of tensor-product
type smoothing factors such as (1+z1)(1+z2), (1+z1)(1+z1z2) or (1+z2)(1+z1z2)

plus contractivity of the difference scheme implies C1-regularity. For details we
refer again to [39].

An apparently different approach to convergence and regularity analysis of
subdivision schemes is given by the so called ‘JSR approach’. Essentially, we
associate to the binary scheme 2s matrices constructed from the subdivision mask
and the reproduced space of polynomials. Then, we compute their joint spectral
radius (JSR) whose magnitude indicates the Hölder regularity of the scheme as
explained. The JSR of a collection of matrices extends the classical notion of
spectral radius of a matrix in the following sense.

Definition 1 Given a finite collection of square matrices M, the JSR is

ρ(M) := lim
m→∞ max

M1,...,Mm∈M

∥∥∥∥∥∥

m∏

j=1

Mj

∥∥∥∥∥∥

1/m

.

First introduced by Rota and Strang in 1960 [61], the JSR was almost forgotten,
and then rediscovered in 1992 by Daubechies and Lagarias [28] in the context of
the analysis of refinable functions. In general, unfortunately, even the numerical
approximation of the JSR is a very challenging task making the JSR approach
not always applicable. But, recently, an algorithm for the computation of the JSR
has been proposed in [45] (see also [52], for a different approach) and a Matlab
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code is now available in [51]. We also observe that even if the difference schemes
approach and the JSR approach appear to be intrinsically different, they characterize
the subdivision regularity in terms of the same quantity. As demonstrated in [7] the
two approaches differ only by the numerical schemes they provide for the estimation
of the same quantity.

A completely different approach for estimating the regularity of Sa is by its
Fourier transform. Indeed, the equality (23) can be used to determine the regularity
of the basic limit function φa (i.e. of the subdivision scheme Sa), by estimating the
decay of its Fourier transform. The latter approach is the one used by many authors
(see [27, 34], for example).

Remark 1 The analysis tools presented in this section apply to regular regions or
away from irregular elements. In case of meshes containing irregular vertices/faces a
different approach to the analysis of subdivision scheme is needed. The appropriate
tool to analyze the regularity of the generated limits in the vicinity of an irregular
element involves the so called characteristic map and the spectral analysis of the
local subdivision matrix. For all details we refer the interested reader to [58, 63, 66]
and references therein.

3 Motivation for Non-stationary Subdivision Schemes

From the previous section we easily understand that the subdivision idea can also
be implemented in a level dependent way, that is to say by using different masks at
different iterations. Indeed, at level k, the operator Sa in (2) can be replaced by Sa[k]
leading to the non-stationary variant of subdivision

⎧
⎨

⎩

Input {a[k]}k≥0, p[0]
For k = 0, 1, · · ·

p[k+1] := Sa[k]p
[k]

(28)

Compared with the stationary ones, non-stationary subdivision schemes are not
more complicated. Changing coefficients level by level is not a crucial implemen-
tation matter, considering that in practice, only few iterations are executed. Also,
the definition of convergence and regularity as in (3) is not affected by the level
dependence of the rules. Nevertheless, non-stationary subdivision schemes have
different properties and enrich the class of subdivision limit functions. For example,
applied to 2D-points they can generate circles, ellipses, or other conics. Also, they
allow the user to modify the shape of a subdivision limit by the help of level-
dependent tension parameters. In the univariate case, they can generate exponential
B-splines [38], C∞ functions with compact support as the Rvachev-type function
[39], or B-spline like functions with higher smoothness relative to the support size,
[10, 15].
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The algebraic formalism associated with non-stationary schemes is as in the
stationary situation. The only difference is that now we deal with a sequence of
symbols

A[k](z) =
∑

α∈Zs
a[k]α zα, k ≥ 0, z ∈ C

s \ {0}, s = {1, 2}. (29)

Thus, the k-th subdivision step can be written as

P [k+1](z) = A[k](z)P [k](z2), with P [k](z) =
∑

α∈Zs
p[k]α zα, k ≥ 0.

The discussion on the use of the corresponding algebraic tools as well as of other
associated tools like the JSR is postponed to Sect. 4. Here, we mention that in case
the non-stationarity is characterized by the cyclic repetition of � different masks
the scheme is actually stationary with 2�-arity rather than 2. Indeed, for any k =
r · �, r > 0 we can consider � steps simultaneously, and obtain

P [k+�](z) = Ã(z)P [k](z2� ), where Ã(z) := A[�−1](z)A[�−2](z2) · · ·A[0](z2�−1
),

implying that Ã(z) is the symbol of an arity-2� scheme that multiply by 2� the
number of points at each step (see e.g.,[20]).

In the non-stationary case, when using the sequence of masks starting not with
a[0] but with any a[m], m > 0, we get different results according to the starting mask
a[m], where m varies from 0 to∞. The subdivision scheme in this case is

⎧
⎨

⎩

Input {a[k]}k≥0, p[0]
For k = 0, 1, 2, · · ·

p[k+1] := Sa[m+k]p
[k]

(30)

From the above we understand that in the level dependent case we have no
longer a unique basic limit function but rather a sequence of basic limit functions
{φm, m ≥ 0} each defined as

φm = lim
k→∞ Sa[k+m] · · · Sa[m]δ, (31)

where δ is the sequence with value 1 at the origin, and zero on Z
s \ {0}. Due

to linearity and uniformity of the operators, the sequence of basic limit functions
satisfies a system of ‘generalized’ refinement equations,

φm =
∑

α∈Zs
a[m]α φm+1(2 · −α), m ≥ 0. (32)
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The system of generalized refinement equations (32) is the base to the generation of
non-stationary multiresolution and non-stationary wavelets [3, 42].

The next subsections show the capabilities of level-dependent schemes in
applications, e.g., in geometric design and in approximation [49, 50], in biological
imaging [29, 65] and in the generation of non-stationary wavelets [13, 42, 67].

3.1 Reproduction of Conics and Quadrics and Use of Level
Dependent Tension Parameters in CAGD

It is well known that B-spline curves and surfaces are central tools in computer-aided
geometric design but also in computer graphics, due to the properties of B-splines,
which guarantee, for example, that the B-spline curves/surfaces are in the convex
hull of their control polygons/meshes. B-splines, unfortunately, are not capable
to reproduce in an exact way conic sections which are needed very often. This
is why different B-spline generalizations, like NURBS, have been proposed. The
rational nature of NURBS is the reason why it is difficult to integrate or differentiate
them. With NURBS it is possible to exactly represent conic sections but not all
transcendental curves. Therefore, researchers have started to consider ‘generalized
B-splines’ that is bell-shaped functions piecewise defined with segments in other
spaces than rational polynomials. By selecting spaces of trigonometric or hyperbolic
functions, for example, with generalized B-splines it is possible to represent
polynomial curves, conic sections or transcendental curves. What is relevant to this
paper is that several instances of generalized B-splines with integer knots can be see
as limit functions of non-stationary subdivision schemes.

The computation of limit surfaces by a subdivision scheme is much simpler than
the modelling of surfaces with NURBS (B-splines) since, in the latter case, the
complete surface consists of NURB (B-splines) patches with geometric continuity
between the patches. For details on connecting smoothly patches see [55, Chapter
13].

Note that meshes for modelling surfaces of arbitrary topology have irregular
regions, and the refinement rules have to be adapted to the vicinity of irregular
elements.

As an example we can consider the following non-stationary subdivision scheme
generating exponential splines with segments in

span{eθ t , e−θ t , teθ t , te−θ t }, θ ∈ R ∪ iR,

with θ a parameter to be chosen by the user (see [14] and [21]). These exponential
splines are a special instance of L-splines (see [62]). The refinement rules are
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p
[k+1]
2i = 1

2(v[k] + 1)2
p
[k]
i−1 +

4(v[k])2 + 2

2(v[k] + 1)2
p
[k]
i + 1

2(v[k] + 1)2
p
[k]
i+1,

p
[k+1]
2i+1 =

2v[k]

(v[k] + 1)2
p
[k]
i + 2v[k]

(v[k] + 1)2
p
[k]
i+1,

(33)

where the non-stationary parameter v[k] is defined as

v[k] = 1

2

(
e

i θ

2k+1 + e−i θ

2k+1

)
=
√

1+ v[k−1]
2

, k ≥ 0, v[−1] = cos(θ) > −1.

The effect of the parameter θ on the exponential B-spline shape obtained when
starting the subdivision process from the δ sequence is illustrated in Fig. 12.

We remark that the above scheme is only generating exponential-polynomial
spaces but is not reproducing them. Yet, in [19, 22, 40] and [54], exponential-
polynomials reproducing schemes are provided. In the first two references, these
schemes are shown to generate conics, cardiod, lemniscate, astroid or nephroid as
shown in Fig. 13.

Similarly, bivariate non-stationary schemes reproducing quadrics are defined and
investigated for example in [44, 48, 49, 53]. Since the corresponding refinement
rules, in particular in case of extraordinary points, are non-trivial, we here simply
present some of the pictures from [53] in Fig. 14.
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1

Fig. 12 Basic limit functions for the scheme in (33) with θ ∈ {i, 3i, 5i, 7i} (left) and θ ∈
{3, 2.5, 2, 0} (right) (from lower to taller functions). Initial control polygon represented by a dashed
line

Fig. 13 Subdivision limit curves (full lines) and the initial control polygons (dashed line)
connecting points from a circle, a nephroid a lemniscate and a quadrifolium
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Fig. 14 First line: initial meshes. Second line: results obtained by applying 5 steps of the non-
stationary scheme in [53]

To conclude this section, we shortly discuss how non-stationary tension parame-
ters and level dependent rules can influence the shape of the subdivision limits. Let
us consider the interpolatory non-stationary scheme with the first two odd rules

p
[k+1]
2i+1 =

1

2
p
[k]
i−1 +

1

2
p
[k]
i , k = 0, 1, i ∈ Z, (34)

and then, for k > 1, for ω[k] chosen at random from the interval [ 3
64 ,

1
16 ], the odd

rules are given by

p
[k]
2i+1 = −ω[k]p[k]i−2+ (

1

2
+ω[k])p[k]i−1+ (

1

2
+ω[k])p[k]i −ω[k]p[k]i+1, k ≥ 2, i ∈ Z.

(35)
As shown in [10] by a JSR approach, the scheme based on (34) and (35) is C1-
convergent with Hölder exponent α ≥ − log2

3
8 ≈ 1.4150 and its basic limit

function is supported in [− 3
2 ,

3
2 ] while in the classical four point case the scheme

is known to be C1-convergent with Hölder exponent 2 − ε for any ε > 0 and the
support is [−3, 3] (see [32]). Figure 15 compares the two basic limit functions.

The last example shows that with a non-stationary interpolatory scheme it is
possible to obtain a C1 basic limit function of smaller support than in the stationary
interpolatory case.
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Fig. 15 Basic limit function of the 4-point scheme (red, dashed line), and of the scheme (34)–(35)
(blue, solid line)

3.2 Non-stationary Wavelets and Non-stationary Interpolatory
Subdivision Schemes

The construction of stationary orthonormal wavelets of compact support is closely
related to the DD-family of subdivision schemes. Such a Daubechies wavelet is
generated by the integer shifts of a refinable function, which is the basic limit
function of a subdivision scheme. The mask of this scheme is derived from the mask
of a corresponding DD-scheme, by taking an ‘almost square root’ of the symbol of
the DD-scheme. This is possible since the symbols of the DD-schemes are non-
negative on the unit circle (when z is replaced by exp(iθ), 0 ≤ θ < 2π ) [27]. This
construction has two analogues in the non-stationary setting.

The first analogoue is derived from interpolatory schemes that reproduce spaces
of exponential polynomials of finite dimension. In [40] non-stationary interpolatory
schemes reproducing spaces of 2n exponentials are shown to converge and their
smoothness is shown to be at least as that of the stationary DD-scheme repro-
ducing all polynomials of degree less than 2n. In [67] non-stationary wavelets
are constructed from non-stationary interpolatory subdivision schemes by a similar
procedure as in the stationary case, without a proof that this is indeed possible. These
wavelets were already used in the analysis of signals that are better approximated
by exponentials rather than by polynomials, such as signals that have their energy
concentrated around specific frequencies. For example in neurophysiology, such
wavelets are well-suited for the analysis of exponential pulses, corresponding to
different neurons. Proofs that the above construction is possible are given in [42].
Also given, are proofs showing that the smoothness of the non-stationary wavelets
related to spaces of real exponential polynomials is at least that of the corresponding
stationary wavelets.

The second analogue is derived from non-stationary interpolatory subdivision
schemes with masks of growing support. A simple example is the sequence of masks
of the DD-schemes (17), with n the subdivision level (see Sect. 4.3). Following the
construction in the stationary case, the basic limit function of the non-stationary
scheme with masks ‘almost square root’ of the masks of the DD-schemes, is the
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‘father’ wavelet. These wavelets, which are C∞ compactly supported, are suitable
for representing very smooth functions [13].

3.3 Image Segmentation: Active Contours and Active Surfaces

This section describes the use of non-stationary subdivision schemes in biological
imaging and relies on the work done by the group of M. Unser at EPFL, Switzerland.
Active contours or snakes, are tools for the segmentation of biomedical images. They
consist of an initial curve that progresses towards the boundary of the object of
interest guided by the minimization of an appropriate energy term. Relevant to our
discussion is that subdivision schemes can also be used to describe a contour by the
iterative application of refinement rules staring from an initial finite set of control
points. The discrete nature of the initial representation is convenient in practice.
It implicitly yields a continuously defined model whose properties depend on the
used subdivision scheme: its approximation order, its capability of reproducing
circular, elliptical, or polynomial shapes, its interpolating or approximating nature.
In particular, the capability of modelling ‘roundish’ objects is facilitated by non-
stationary schemes.

Therefore, as an alternative to the traditional approaches, in [2] subdivision
schemes are used to model a curve driven by a small set of ‘master’ points, called
control points, and a set of ‘slave’ points (generated by a specific subdivision
scheme) that describe the curve. The advantages of the use of subdivision schemes
are their simplicity of implementation and their multiresolution nature, so that the
contour of a shape can be represented at varying resolutions and result into a snake
be optimized in a coarse-to-fine fashion.

Based on similar ideas is the use of subdivision for the generation of active
surfaces, also called 3D deformable models used for the extraction of volumetric
structures. They consist of deformable surfaces that, starting from an initial
user-provided configuration, evolve toward the boundary of the 3D object. The
deformation can be manual or automatic. Certainly, a reasonable deformable model
must depend on a small number of control points (to reduce the complexity of
the deformation and to improves robustness), and must reproduce or approximate
ellipsoids. In [1] the authors propose a 3D deformable model obtained by applying
a tailored non-stationary subdivision scheme to a suitable coarse mesh with few
control points. The approach presents several advantages: First, surfaces of arbitrary
topological type can be handled; second, by simple modifications of the control
points, easy and localized interactions can be achieved; third, the implementation is
easy and cheap in virtue of the discrete nature of the scheme.
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4 Analysis Tools for Non-stationary Subdivision Schemes

In this section we consider analysis tools of non-stationary schemes and highlight
similarities and differences with the stationary case.

4.1 Masks of Fixed Support

First we consider analysis tools of non-stationary schemes for the case that all the
masks {a[k]}k≥0 have bounded support {0, ..., N} for some positive integerN , which
is the more common and studied situation. In this case the methods of analysis are
related to the analysis of stationary cases via the notion of asymptotic similarity
and asymptotic equivalence. We start by introducing the notion of asymptotic
equivalence (see [38]).

Definition 2 Let � ∈ N. The non-stationary schemes {Sa[k] }k≥0 and {Sb[k] }k≥0 are
said asymptotically equivalent of order � if they satisfy

∞∑

k=0

2k�‖Sa[k] − Sb[k]‖∞ <∞, (36)

where ‖Sa[k]‖∞ := maxε∈Ξs
{∑

α∈Zs |a[k](2α + ε)|
}

and Ξs := {0, 1}s .
Under an additional technical assumption on the schemes {Sa[k] }k≥0 and

{Sb[k] }k≥0, the regularity of {Sa[k] }k≥0 can be deduced from the known regularity
of the asymptotically equivalent scheme {Sb[k] }k≥0 with the method in [38]. Yet,
in [38] only the convergence of non-stationary schemes is derived by asymptotic
equivalence of order � = 0 to a stationary scheme. The asymptotic equivalence of
order � ≥ 1 is too strong for analyzing smoothness. For that the notion of smoothing
factors is introduced there.

Definition 3 Let the Laurent polynomials {A[k](z)}k≥0 be of the form

A[k](z) = 1

2
(1+ rkzλ)B[k](z), k ≥ K ≥ 0, λ ∈ N

s
0. (37)

The factors { 1
2 (1+ rkzλ)}k≥K are termed ‘smoothing factors’ if

rk = 2η2−k (1+ εk) with η ∈ R and
∞∑

k=K
|εk|2k <∞.

Theorem 1 ([38, Theorem 10]) In the notation of Definition 3, if {B[k](z)}k≥0
corresponds to a Cm(Rs) non-stationary subdivision scheme then the basic limit
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functions of the non-stationary scheme with symbols {A[k](z)}k≥0 and their direc-
tional derivative in direction λ are also Cm smooth in Rs .

A direct consequence of Theorem 1 (see the remark below the statement of [38,
Theorem 10]) is:

Corollary 1 Let {A[k](z) =∏si=1
1
2 (1+ rk,izλi )B(z)}k≥0 with s smoothing factors.

If the stationary scheme corresponding to B(z) is Cm(Rs) and if λ1, · · · , λs are
linearly independent vectors, then the basic limit functions of the non-stationary
scheme corresponding to {A[k](z)}k≥0 is Cm+1 smooth in Rs .

In [41], the condition of asymptotical equivalence is weaken, in the univariate
case, by requiring that the j -th derivatives of the symbols of the non-stationary
scheme {Sa[k] }k≥0 satisfy

|DjA[k](−1)| ≤ C2−(�+1−j)k, j = 0, . . . , �, � ≥ 0, C ≥ 0. (38)

Moreover, they assume that the non-stationary scheme is asymptotically equivalent
(of order 0) to some stationary scheme. The conditions in (38) are a generalization
of the so-called sum rules in (27). In the stationary case, sum rules are known to be
necessary for smoothness of subdivision (see e.g [5]), and also sufficient if the basic
limit function of the scheme is L∞-stable (see e.g. [39]).
In the spirit of (38) approximate sum rules are defined in [9]. They are a
generalization of the notion of sum rules.

Definition 4 Let � ≥ 0. The sequence of symbols {A[k](z)}k≥0 satisfies approxi-
mate sum rules of order �+ 1, if

μk := |A[k](1s)− 2s | and δk := max|η|≤� max
ε∈Ξ ′\{1s }

|2−k|η|DηA[k](ε)| (39)

satisfy

∞∑

k=0

μk <∞ and
∞∑

k=0

mk� δk <∞ . (40)

Note that if the sequences {μk}k≥0 and {δk}k≥0 (called sum rule defects) are
zero sequences, the corresponding non-stationary symbols satisfy sum rules of order
�+ 1.

We continue by introducing a weaker relation than asymptotical equivalence
termed asymptotic similarity (generalization of the one given in [16]) relating the
properties of non-stationary subdivision schemes to the corresponding properties of
certain stationary schemes.

Definition 5 ([9]) For the mask sequence {a[k]}k≥0 we denote by L the set of masks
which are accumulation points of this sequence,



Non-stationary Subdivision Schemes 63

a ∈ L, if ∃{kn, n ∈ N} such that lim
n→∞ a[kn] = a .

Definition 6 Two non-stationary schemes {Sa[k] }k≥0 and {Sb[k] }k≥0 are called
asymptotically similar, if the corresponding sets of accumulation points coincide.

We already observed in Sect. 2.4 that in the stationary case, the rate of convergence
of the corresponding subdivision scheme Sa and the Hölder regularity of the
subdivision limits, can be given in terms of the joint spectral radius of the collection
of certain matrices derived from the subdivision mask a and linked to the order of
sum rules satisfied by the associated symbol A(z) (see also [52, 60]).

In the non-stationary setting the joint spectral radius has no straightforward gen-
eralization and is not directly applicable. Hence, in [9] a link between the stationary
and non-stationary settings is established based on the sets of accumulation points
L of {a[k]}k≥0, and sufficient conditions for C�-convergence and Hölder regularity
of non-stationary schemes are provided. As in the level independent case, each
mask in the set L determines a set of transition matrices. The restrictions of all
these transition matrices to a certain finite dimensional difference subspace (denoted
by V�) is denoted by TL|V� . Theorem 2 states that C�-convergence and Hölder
regularity of non-stationary schemes is obtained via the joint spectral radius ρL
of the collection of matrices TL|V� .
Theorem 2 ([9, Theorem 2]) Let � ∈ N and let {δk}k≥0 be defined in (39). Assume
that the symbols of {Sa(k)}k≥0 satisfy approximate sum rules of order � + 1 and
that ρL := ρ

(
TL|V�

)
< 2−�. Then the non-stationary scheme {Sa[k] }k≥0 is C�-

convergent and the Hölder exponent α of its limit functions satisfies

α ≥ min
{
− log2 ρL , − lim sup

k→∞
log2 δk

k

}
.

In the univariate case more results are available. In [23] and also in [14],
the link between approximate sum rules, generation/reproduction of exponential
polynomials and approximation order is investigated, in the univariate case. In
fact, the authors show that the property of reproducing N exponential polynomials
implies approximate sum rules of order N and even approximation order N if
asymptotic similarity to a convergent stationary scheme is assumed. Moreover,
under asymptotic similarity to a convergent stationary scheme and reproduction of
one exponential polynomial, the property of generating N exponential polynomials
implies approximate sum rules of order N . The property of generating exponential
polynomials guarantees the existence of difference operators exactly as in the
stationary case. Moreover, approximate sum rules of order N and asymptotic
similarity to a stationary CN−1 subdivision scheme provide sufficient conditions
for CN−1 regularity of non-stationary subdivision schemes.

These results are stated in the next theorems where for Λ ⊂ C and Γ (Λ) =
{ν(λ) : λ ∈ Λ} ⊂ N0, the space EPΓ (Λ),Λ, is defined as
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EPΓ (Λ),Λ := {xj eλ x : j = 0, . . . , ν(λ)− 1, λ ∈ Λ, ν(λ) ∈ Γ (Λ)}, (41)

and denoted as EPΓ,Λ, for short. Obviously, its dimension is

dim
(
EPΓ,Λ

) =
∑

λ∈Λ
ν(λ).

Theorem 3 ([23, Theorem 10]) Let {A[k](z)}k≥0 be the Laurent polynomials
associated with a univariate non-stationary scheme which reproduces a space of
univariate exponential polynomials EPΓ,Λ. If dim

(
EPΓ,Λ

) = N , then, for any
� = 0, · · · , N − 1, we have

|A[k](1)− 2| = O(2−kN ),
∣∣∣∣
d�

dz�
A[k](−1)

∣∣∣∣ = O(2−k(N−�)), k→∞.
(42)

Theorem 4 ([23, Theorem 13]) Let {A[k](z)}k≥0 be the Laurent polynomials asso-
ciated with a non-stationary subdivision scheme which generates the exponential
polynomials space EPΓ,Λ of dimension N , and reproduces one f ∈ EPΓ,Λ.
Moreover, let limk→∞ a[k] = a with Sa a convergent stationary subdivision scheme.
Then, for any � = 0, · · · , N − 1, we have

|A[k](1)−2| = O(2−k),
∣∣∣∣
d�

dz�
A[k](−1)

∣∣∣∣ = O(2−k(N−�)), k→∞. (43)

Theorem 5 ([14, Theorem 4.3]) Assume that a convergent non-stationary scheme
reproduces the exponential polynomials in the N -dimensional space EPΓ,Λ.
Assume further that limk→∞ a[k] = a with Sa a convergent stationary scheme.
Then, for any initial data of the form f[0] := {f (2−mi)}i∈Z for an integer m ≥ 0
with f ∈ Wγ∞(R), γ ∈ N, the approximation error is bounded by

‖gf[0] − f ‖∞ ≤ cf 2−min(γ ,N)m , (44)

with cf > 0 denoting a constant depending on f but not on m.

Extension of Theorems 3, 4 to the multivariate setting is still to be done. Some
extension of Theorem 5 is in [53].

To conclude we recall the conditions non-stationary schemes need to satisfy
to generate and reproduce (in the sense of (7) and (6)) exponential-polynomial
functions, that is functions in the space

EPΓ,Λ := {xγ eλ·x : γ ∈ Γ, λ ∈ Λ}, Γ ⊂ N
s
0, Λ ⊂ C

s .

In fact, both generation and reproduction of exponential-polynomials can still be
characterised in terms of algebraic conditions involving the parameter values
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{t[k]α = 2−k(α + τ ), }α∈Zs , with τ = (τ 1, τ 2) in case s = 2.

The conditions are in terms of the symbols {A[k](z)}k≥0 evaluated at

Vk={(v1, . . . , vs)
T : vj=εj e−(2−(k+1)λj ), λ=(λ1, . . . , λs) ∈ Λ, ε ∈ {−1, 1}s },

and are collected in the following Theorem (taken from [11]) with the notation vτ =
v
τ 1
1 · · · vτss for γ = (γ 1, . . . , γ s ∈ N

s
0. There a non-singular scheme is a scheme

generating limits identically equal to zero, only from zero initial data.’

Theorem 6 ([11, Theorem 4.7]) A non-singular subdivision scheme {Sa[k] }k≥0
reproduces EPΓ,Λ if and only if there exists a parameter τ ∈ R

s such that for
all v ∈ Vk , k ≥ 0, γ ∈ Γ ⊂ N0,

vγDγA[k](v) =
{

2 · vτ qγ (τ ), for all v corresponding to ε = 1s ,
0, otherwise,

(45)

where qγ is the polynomial of degree |γ |, γ ∈ N
s
0, given by

q0(z) := 1, qj(z1, . . . , zs) :=
s∏

i=1

γ i−1∏

�i=0

(zi − �i), γ = (γ 1, . . . , γ s). (46)

4.2 Non-stationary Schemes with Extraordinary Vertices/Faces

The analysis of a level-dependent subdivision scheme in the neighborhood of an
irregular vertex/face is very challenging. The main difficulties are due to the fact
that any approach based on the spectral analysis of the subdivision matrix and on the
study of the characteristic map is not applicable. Indeed, no general tools to analyze
non-stationary subdivision schemes at irregular vertices/faces were available till
very recently. The only contributions to this analysis are the very recent paper [17]
and the work of Jena et al. in [48], where a specific scheme is considered. In [17]
a general procedure to check if a non-stationary subdivision scheme is convergent
in the neighborhood of an extraordinary vertex/face is given. Moreover, sufficient
conditions for the limit surface to be tangent plane continuous at the limit point
of an extraordinary vertex/face are also given in that paper. Below we report both
results.

We recall that the problem of extraordinary points occurs in the generation of
surfaces that is in the case s = 2 and that we can restrict our analysis to meshes with
a single extraordinary element surrounded by ordinary vertices (see [63]).

At each step, in the neighborhood of an irregular vertex/face, a subdivision
algorithm relating the vertices of the k-th level mesh with those of the next level
k + 1, can be conveniently encoded in the rows of a local subdivision matrix Mk
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whose dimension depends on the valency of the vertex. If the scheme is level-
independent each step of the subdivision algorithm can be conveniently encoded in
the rows of one local subdivision matrix M . The dimension of this matrix depends
on the valency of the extraordinary vertex, too.

Theorem 7 ([17, Theorem 4.1]) Let S be a non-singular, non-stationary subdivi-
sion scheme whose action in an irregular region is described by a matrix sequence
{Mk}k≥0. Let S be also rotationally symmetric. Moreover, let S̄ be a rotationally
symmetric, stationary subdivision scheme associated with the matrixM in the same
irregular region. If,

(i) S̄ is convergent both in regular and irregular regions,
(ii) S is asymptotically equivalent to S̄ in regular region,
(iii) in the irregular regions, for all k ≥ 0, the matricesMk andM satisfy

‖Mk −M‖∞ ≤ C
σk

with C a constant (0 < C <∞) and σ > 1,

then, for all initial data the non-stationary subdivision scheme S is convergent, both
in regular regions and in the irregular one.

To understand the next result we recall from [17] that the iterated refinement of a
surface subdivision scheme in the neighborhood of an irregular element generates a
sequence of surface rings {Rk}k≥1 corresponding to regular points which covers all
of the surface except for the ‘central’ point which is the limit of the extraordinary
vertex or face.

Theorem 8 ([17, Theorem 4.2]) Let S be as in Theorem 7. Assume in the regular
patch ring Rk+1 the action of S is described by a vector Φk+1(u, v) consisting of
all the basic limit functions of S whose support intersect Rk+1. Moreover, let S̄ be
as in Theorem 7 associated with a matrixM in the same irregular region. Under the
conditions:

(i) S̄ is C1-convergent in regular regions and its symbol A(z) contains the factor
(1+ z1)(1+ z2);

(ii) in regular regions S is defined by the symbols {A(k)(z)}k≥0 where eachA(k)(z)
contains the factor (1+ z1)(1+ z2);

(iii) in regular regions S is asymptotically equivalent of order 1 to S̄;
(iv) the eigenvalues ofM are λ0 = 1, 0 < λ1 < 1, and the rest have absolute value

less than λ1;
(v) in the irregular regions, for all k ≥ 0, the matrices Mk andM satisfy, ‖Mk −

M‖∞ ≤ C
σk

with C some constant (0 < C <∞) and σ > 1
λ1
> 1;

(vi) the entries of Φk+1(u, v) sum up to 1;

the surface generated by S is normal continuous.
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4.3 Masks of Growing Support

This section is devoted to a short description of non-stationary univariate sub-
division schemes based on masks with growing supports. This is an important
example of the potential strength of non-stationary schemes, since it allows for the
generation of basic limit functions with high regularity and small support. For details
concerning the analysis of these types of schemes and some of their applications we
refer the reader to [13] and [33]. The analysis of smoothness of the schemes in these
papers is based on the growing number of smoothing factors in their symbols and on
Fourier analysis. The application is the generation of C∞ multiresolution analysis
with high approximation order and the generation of C∞ compactly supported
wavelets [13, 43].

The most famous example of a subdivision scheme of this type is given by the
one based on the masks in (14) with n the subdivision level. As shown in [33], the
basic limit function φ0 is the Rvachev’s up-function which is C∞ and supported on
[0, 2], [56]. The first three steps of this scheme are depicted in the next Fig. 16.

A similar example of C∞ compactly-supported basic limit functions can be
obtained if each A[k](z) is a product of k smoothing factors (see Definition 3). In
this example the support is also [0, 2].

Another nice example is given by the interpolatory non-stationary scheme based
on the masks (18) again with n the subdivision level (see [13, 33, 43]). The basic
limit function φ0 is a function which is C∞ and supported in [−3, 3]. The first three
steps of this scheme are shown in Fig. 17.

Fig. 16 Three steps of the scheme with masks (14) with n the subdivision level (initial points in
magenta)

Fig. 17 Three steps of the scheme with masks (18) with n the subdivision level (initial points in
magenta)
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5 Open Problems in Non-stationary Subdivision

This closing section provides a short overview of open problems—specifically for
non-stationary subdivision schemes—that are important to consider in the near
future. Yet, due to space reasons, it will not be a detailed description as the one
in the recent paper [59] related to the stationary case. Topics are listed in order of
difficulty, with respect to the authors’ point of view.

– Bivariate results: from Sect. 4.1 it is evident that many results on conver-
gence/regularity and approximation order are available in the univariate case
only. Their extension to the bivariate setting is important. Also, construction of
bivariate non-stationary interpolatory subdivision schemes and wavelets based
on them is a topic that deserves further study;

– Applications: exponential reproducing non-stationary schemes could be used
more extensively in image processing and highly smooth wavelets, as in [13],
could be applied to real-world problems where the analysed functions are of high
smoothness;

– Artefacts and unexpected behaviour of subdivision curves/surfaces: it would be
important to better investigate the use of non-stationary tension parameters to
tune and control subdivision surfaces;

– New tools for analysis of non-stationary schemes: we believe that to escape from
the notions of asymptotic similarity or asymptotic equivalence would give a great
impulse to non-stationary schemes;

– Increase the smoothness at extraordinary vertices of subdivision surfaces: we
suppose that the possibility of changing the rule coefficients with the iterations
can be crucial to overcome the limitation of stationary schemes that are limited
to C1-smoothness at extraordinary vertices. The key idea for increasing the
smoothness, is to allow the involvement of more and more points, i.e. the use
of masks of growing support (see Sect. 4.3).

Acknowledgments The first author thanks the Research Italian network on Approximation
(RITA) and Indam-GNCS for supporting this research activity.
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1 Introduction

The accurate and efficient numerical evaluation of singular integrals is one of
the crucial steps in the numerical simulation of differential problems that can be
modeled by Boundary Integral Equations (BIEs) [12]. This is the case when relying
on Boundary Element Methods (BEMs), which were introduced in the 1980s for the
numerical solution of several differential problems, either stationary and evolutive,
see for example [7, 24] and references therein. The main features of BEMs are the
reduction of the problem dimension and the easiness of application to problems
on unbounded domains. On the other hand it is well known that one of the major
efforts with any BEM formulation consists in having to deal with singular and nearly
singular integrals, which require special numerical treatment in order to preserve the
theoretical convergence order of the numerical solution produced by the adopted
discretization.

In this paper we focus on cubature rules for weakly singular integrals. Since
the interest in integrals of this kind comes from the isogeometric formulation
of BEMs, let us briefly recall their main ideas. The first formulation of BEMs
considered a piecewise linear approximation of the boundary of the domain, but
more accurate curvilinear BEMs already appeared in the 1990s. In the latter methods
the boundary of a 2D domain is described through a planar parametric curve.
In the parameter domain of the curve a set of Lagrangian functions is defined
for the discretization of the considered BIE. The basis of the discretization space
where the missing Cauchy data are approximated is just obtained by lifting such
functions to the physical boundary of the domain using its parametric representation.
Such methodology is common to collocation and Galerkin approaches and can be
extended also to the isogeometric formulation of a BEM. This is characterized by the
significant assumption that the boundary is parametrically represented in B-spline or
NURBS form and the discretization space V is defined through B-splines instead of
Lagrangian functions. This makes possible to increase the smoothness of functions
belonging to V at desired joints between adjacent elements, often guaranteeing
a remarkable reduction of the number of degrees of freedom necessary to attain
a certain level of accuracy [3]. Note that additional flexibility can be achieved
by relying on generalized B-splines, see for example [14] and references therein,
that can be used for the description of the geometry and/or the definition of the
discretization space V [4]. Furthermore, it has been already shown in the literature
that for a 2D IgA–BEM the element–by–element assembly strategy is not anymore
strictly necessary [1]. This computational advantage is obtained since the required
integrals, even when singular, can be approximated by rules formulated directly on
the support of the B-spline explicitly appearing in the integrand as one of the basis
functions generating V [6].

The literature on numerical approximation of singular integrals is quite vast and
it is difficult to cover all the results on this issue, see for instance the book [19] or the
more recent paper [2, 9] and references therein. As our interest for singular integrals
directly descends from their occurrence within the Isogeometric formulation of



Spline Quasi-Interpolation Applied to Singular Cubature 75

BEMs (IgA–BEMs), we limit our attention to the integrals of this kind arising in
3D problems. Singularity removal is often proposed for the numerical treatment of
the occurring multivariate weakly singular integrals. For example in [13] where the
3D Stokes problem is considered, the singularity is removed by exploiting carefully
chosen known solutions of the analyzed partial differential equation. In other papers
these integrals are reformulated by using a suitable coordinate transformation, see
for example [22] for Duffy and [23] for polar transformations. In these cases the
additional emerging transformation term approximately cancels out the singularity
of the kernel and the resulting integrals become regular. In [10] an adaptive Gaussian
quadrature rule is presented and it is shown that it is able to tackle singular and also
near singular integrals. However all these approaches do not exploit the smoothness
of B-splines, taking only into account their piecewise polynomial nature. For this
reason, the related cubature rules are always applied after splitting the integration
domain into elements with a consequent increase of the computational cost. Instead,
in this paper, the B-spline factor is explicitly treated and the cubature rule is
applied on the whole B-spline support, not suffering from inter-element smoothness
decrease of B-splines. The rules here proposed are an extension to the bivariate
setting of the quadrature formulas for singular integrals introduced in [6]. Their
key ingredients are a spline quasi-interpolation approach and the spline product
formula [16], both considered in their tensor–product formulation. By exploiting the
integration on the whole B-spline support, they are attractive for IgA-BEM also in
the 3D case, where a replacement of element-by-element assembly with a function-
by-function strategy is even more advantageous.

The paper is organized as follows. First we introduce cubature rules for weakly
singular integrals, showing their effectiveness when the considered kernel is mul-
tiplied by a general function and a B-spline. Then the combination with suitable
multiplicative or subtractive techniques specific of the 3D setting is analyzed, in
order to show that they become applicable to deal with specific singular integrals of
interest in the IgA-BEM setting.

2 The Problem

In this paper we focus on cubature rules for singular integrals of the following type,

∫

RI

K(s, t) BI,d(t) fs(t) dt, s ∈ REI , (1)

where BI,d is an assigned bivariate B-spline of bi-degree d := (d1, d2) with support
in the rectangle RI, REI ⊃ RI, and

K(s, t) := 1√
(t− s)T A(s)(t− s)

, t = (t1, t2), s = (s1, s2), (2)
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with A(s) denoting a symmetric and positive definite matrix (which ensures that
the singularity appears just at t = s). Concerning the smoothness requirements for
fs, since our rules are based on the tensor product formulation of (a variant of)
an Hermite quasi-interpolation scheme, it is reasonable to assume fs belonging to

C1,1(RI), that is to the space of bivariate functions g such that ∂
i+j g
∂ti1∂t

j
2

is continuous

in RI for i, j ≤ 1. We refer to [20] for an introduction on basic properties
and definitions of B-splines and in particular on their tensor product bivariate
extension. We observe that for s ∈ RI the integral in (1) is weakly singular and
it becomes nearly singular when s ∈ REI \ RI, with the maximal distance from RI

of s ∈ REI \ RI sufficiently small to exclude regular integrals. This is in contrast to
other approaches proposed in the literature (see for instance [21]), where typically
different integration methods are used for singular and nearly singular integrals. We
also note that our rules numerically compute the integral in (1) by approximating
only the factor fs. This is particularly useful when the function fs is more regular
in RI than BI,d, since usually it can be better approximated than the whole product
BI,dfs [6].

We outline that the kernel K is of interest for BEMs when A(s) is the matrix
containing the coefficients at t = s of the first fundamental form associated to a
differentiable parametric surface X = X(t), t ∈ D ⊂ R2,

A(t) =
[
(Xt1 · Xt1)(t) (Xt1 · Xt2)(t)
(Xt1 · Xt2)(t) (Xt2 · Xt2)(t)

]
. (3)

Indeed in this case the quadratic homogeneous polynomial

Ps(t) := (t− s)T A(s)(t− s) (4)

collects the lowest order non-zero terms of the Taylor expansion at t = s of ‖X(t)−
X(s)‖2

2. So K(s, t) is a local approximation of

G(s, t) := 1

‖X(t)− X(s)‖2
, (5)

which is, up to a multiplicative constant, the kernel appearing in the single layer
potential,

∫

RI

G(s, t) BI,d(t) gs(t) dt, (6)

for 3D Laplace problems, written in intrinsic coordinates. The B-spline factor in (6)
corresponds to a basis function of the tensor product spline space V used for the
discretization, while gs appears in the formulation as the Jacobian of the domain
transformation to the parametric domain. Note that G is substantially the kernel
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associated also with the Helmholtz problem, missing only an additional regular
trigonometric factor appearing in the fundamental solution of such equation.

In this work we consider the so-called singularity extraction procedure, based
on either a subtractive or a multiplicative technique, to derive a more convenient
formulation of the singular integral. Following this procedure, the integral in (6)
is transformed into an integral with the same kind of singularity but with a more
standard kernel, possibly added to a regular integral.

Denoting with Ga the approximating kernel having the same kind of singularity
of G at t = s, with the subtractive technique the integral in (6) is decomposed in the
following sum,

∫

RI

Ga(s, t) BI,d(t) gs(t) dt+
∫

RI

(G(s, t)− Ga(s, t)) BI,d(t) gs(t) dt (7)

where the second integral is regular if Ga is suitably defined. The first integral in (7)
is still weakly singular and it becomes equal to the integral in (1) if Ga = K is
chosen and fs = gs is set. In this case the regularity of fs is that of the Jacobian of
X. Then, considering the IgA paradigm, we can observe that it can be low (anyway at
least C1,1 if X is a regular C2,2 NURBS parameterization) only at the original knots
involved in the CAGD representation of X, and not at the other knots used to define
the discretization space V . Furthermore, without loss of generality, we can assume
that the original knots have maximal multiplicity, so that the possible reduction of
regularity of fs can appear only at the boundary of RI . With the multiplicative
technique, setting ρs(t) := G(s, t)/Ga(s, t), and fs(t) := ρs(t) gs(t), we obtain

∫

RI

G(s, t) BI,d(t) gs(t) dt =
∫

RI

Ga(s, t) BI,d(t) fs(t) dt, (8)

where the function fs is regular, again if Ga is suitably defined. If in particular
Ga = K, we get

ρs(t) =
√
(t− s)T A(s)(t− s)
‖X(t)− X(s)‖2

, (9)

with A defined as in (3). Note that this reformulation of the singular integral in (6)
can be considered as a bivariate generalization of the standard one proposed in
the literature for dealing with univariate singular kernels, where Ga is just defined
as Ga(s, t) = 1/|s − t |. In the bivariate setting the function ρs defined in (9) is
continuous at t = s, since it can be verified that limt→s ρs(t) exists and is equal to
1. Unfortunately ρs is not smoother than C0 at such point for a general surface X.
Thus, when the integral of interest is that defined in (6) and X is a general surface,
we would need to consider higher order approximations of G instead of K, in order
to deal with functions fs more regular at t = s when they are obtained by using the
multiplicative technique. Note that also adopting the subtractive technique this can
be useful to increase the regularity of the integrand of the regular integral in (7). To
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keep the presentation of our rules concise, this technical but important aspect is not
addressed in this paper.

3 Cubature Rules Based on Tensor-Product Spline
Quasi-Interpolation

Quasi-Interpolation (QI) is a general approach for approximating a function or a
given set of discrete data with low computational cost, see for instance [18] and ref-
erences therein. For a chosen finite dimensional approximating space and a suitable
local basis generating it, the coefficients of the approximation are locally computed
with explicit formulas by using linear functionals depending on the function and
possibly also on its derivatives and/or integrals. Since there is already an explicit
B-spline factor in the considered integral in (1), it is particularly beneficial for us to
approximate the function fs using a spline quasi-interpolation operator. That way
the B-spline factor is preserved in the expression for the numerical integration and
the spline product algorithm can be readily applied [16]. The easiest extension of a
univariate QI scheme to the bivariate setting relies on its tensor-product formulation
which anyway performs function approximation on a rectangular domain, requiring
information at the vertices of a quadrilateral grid of the domain. We add that in
the bivariate spline setting there has recently been a lot of interest for QI schemes
on special type triangulations or even on general ones adopting macroelements,
see for example [5, 11] and references therein. However, since for application to
cubature the analytic expression of the function to be approximated is available and
our integration domain is rectangular, for our purposes the tensor-product extension
is more suitable. In particular we adopt a tensor-product derivative free QI scheme
which is a natural choice for numerical integration.

Denoting with Sp.T the space of univariate splines with degree p and with T the
associated extended knot vector defined in the reference domain [−1, 1], −T =
{ξ0 ≤ · · · , ξp−1 ≤ ξp ≤ · · · ≤ ξm+1 ≤ · · · ≤ ξm+p+1}, with ξj < ξj+p+1 and
ξp = −1, ξm+1 = 1—a spline σ ∈ Sp,T can be represented by using the standard
B-spline basis, Bj,p, j = 0, . . . , m,

σ (·) =
m∑

j=0

λj Bj,p(·).

Thus a univariate derivative free QI scheme to approximate a univariate function f
can be compactly written as follows,

λ = Cf, (10)

where λ := (λ0, . . . , λm)
T is the vector of the spline coefficients; C is a (m +

1)× (K+1) banded matrix characterizing the scheme; f := (f (τ 0, ) . . . , f (τK))
T ,
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with −1 ≤ τ 0 < · · · < τK ≤ 1 completing the characterization of the scheme.
On this concern observe that, if Ci,j j = i − L, . . . , i + U are the non vanishing
elements in C, it must be required that τ i−L, . . . , τ i+U belong to the support of
Bi,p. Furthermore a certain polynomial reproduction capability of the scheme must
be required to ensure a suitable convergence order.

Within this kind of QI schemes, we refer to the derivative free variant of the
Hermite QI method introduced in [15]. Such variant requires in input only the values
of f at the spline breakpoints, since the derivative values required in the original
scheme are approximated with suitable finite differences [15].

In the tensor product formulation of the scheme we have to define a spline σ in
the space Sp1,T1 × Sp2,T2 ,

σ (t1, t2) =
m1∑

i=0

m2∑

j=0

λi,j Bi,p1(t1)Bj,p2(t2).

Setting t := (t1, t2) and I := {(i, j), i = 0, . . . , m1, j = 0, . . . , m2} we can
compactly write

σ(t) =
∑

i∈I

λi BI,p(t),

where BI,p(t) := Bi,p1(t1)Bj,p2(t2).Using for example the lexicographical ordering
for the elements of I and the Kronecker product between matrices, the tensor product
extension of the scheme can be expressed as follows,

λ = (A1 ⊗ A2)f, (11)

where now f =
(
f (τ

(1)
0 , τ

(2)
0 ), f (τ

(1)
0 , τ

(2)
1 ), · · · , f (τ (1)K1

, τ
(2)
K2
)
)T

with f denoting

a bivariate function and λ is the vector λ := (λ(0,0), λ(0,1), . . . , λ(m1,m2)

)T
.

In order to extend to the bivariate setting the quadrature rule for singular integrals
containing a B-spline weight developed in [6], we need two additional ingredients:
a bivariate generalization of the spline product formula and explicit analytical
formulas to compute specific singular integrals. In more detail, we first consider
the tensor product generalization of the algorithm in [16] to express the product
σ BI,d in the bivariate B-spline basis of the product space. Such space has bi-degree
(p1+d1, p2+d2) and the related extended knot vectors in each coordinate direction
are obtained by merging Tk and Tk, for k = 1, 2, knot vectors in each direction k
for BI and σ , respectively. The other necessary step for approximating the integral
in (1) consists in the computation of the so-called modified moments,

μi(s) :=
∫

RI

K(s, t) B(Π)i (t) dt, i ∈ I(Π),
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where B(Π)i , i ∈ I(Π), denotes the B-spline basis of the product space. For this
aim we need again to generalize to the bivariate setting the univariate recursion for
B-splines whose usage in this context was introduced in [1], see also [8].

The final approximation of the integral in (1) is then simply given by the product
μ(s)T λ(Π), where μ(s) is the vector containing the above modified moments
ordered in lexicographical way and λ(Π) is a vector of the same length whose entries
are the coefficients expressing σBI,d in the B-spline basis of the product space.

4 Numerical Results

This section is devoted to check the performance of our cubature rules.
In the experiments we always assume that the bi-degree d = (d, d) of the B-

spline factor in the integrand of (1) is equal to (2, 2) or (3, 3) and that RI =
[−1, 1]2. For simplicity, we consider a uniform distribution of the d+1 breakpoints
of the B-spline in each coordinate direction. In order to deal either with nearly
singular and singular integrals, we consider the source points s = (s1, s2) ∈ S2

with S := {−1.1,−1,−0.5, 0, 0.5, 1, 1.1}.
The tests are performed on a uniform N × N grid for the breakpoints of the

quasi-interpolating spline σ , withN ranging from 6 to 14 with step 2. The bi-degree
p = (p, p) of the quasi-interpolant is set to (2, 2) or (3, 3).

Example 1 In the first example we consider the quadratic bivariate polynomial
function fs(t) = f (t) = t21 + t22 . The aim of the test is to check the exactness
of the proposed cubature rule, since the integration rule is based on the chosen
tensor product QI scheme, which is exact on polynomials of bi-degree (�1, �2) with
�k ≤ p. For this example the matrix A defining the kernel K in (2) is just a constant
matrix with all unit entries. We verified that already with N = 6 we get a maximum
relative error of 1.54e − 13 for s ∈ S2 restricted to the interior of RI . It becomes
7.56e− 12, and 9.60e− 12 when s ∈ S2 is restricted to the boundary of RI and to
values external to RI , respectively.

Example 2 In order to check the convergence order, in this example we consider A
equal to the identity and the analytic function fs(t) = f (t) = exp(t1t2). The results
are collected in Table 1, where in particular the maximal absolute errors errmax1,
errmax2 and errmax3 are reported, varying the numberN×N of cubature nodes
uniformly distributed in RI . The results show a very good behavior of the rules for
the considered test function and matrix.
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Example 3 This example considers the case of the matrix A defined as in (3), with
X being the standard parameterization for the lateral surface of a cylinder of radius
r = 2

X(t) = (r cos(πt1/4), r sin(πt1/4), t2) ,

which implies that RI is mapped to a quarter of the lateral cylindrical surface with
height 2. The factor fs in (1) is assigned as the product between ρs which is defined
in (9) and the Jacobian J (t), with

J (t) := ‖Xt1(t)× Xt2(t)‖2. (12)

This means that the integral with the form in (1) considered for this experiment has
been obtained from (6) by using the multiplicative strategy introduced in (8) with
Ga = K, obtaining in this case a C1,1 smooth function ρs also when s ∈ RI .

Figure 1 shows the convergence behavior of the absolute cubature errors
errmax1, errmax2 and errmax3 for the four considered choices of the pair

6 7 8 9 10 11 12 13 14
10-8

10-7

10-6

10-5

10-4

10-3

errmax1
errmax2
order 4
errmax3
order 3
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(a) (b)

(c) (d)

Fig. 1 Example 3. The convergence behavior of the absolute cubature errors errmax1,
errmax2 and errmax3 for d = 2, p = 2 (a), d = 2, p = 3 (b), d = 3, p = 2 (c) and
d = 3, p = 3 (d)
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(d, p). Comparing left and right images of the figure and first referring to ermax2
and errmax3 (i.e. when the rules are applied to singular integrals), we can observe
that there is not significant advantage in using p = 3 instead of p = 2, either from
the point of view of the convergence order or from that of the initial (N = 6) and
final (N = 14) accuracy. This is a different behavior with respect to Example 2
where the function f was highly smooth everywhere. Referring to errmax1 (i.e.
for nearly–singular integrals) however, this comment does not hold anymore.

We observe that for the maximum considered value of N, N = 14, we achieve
a value for ermax3 of the order of 10−5 which corresponds to a relative error
of the same order; at a first sight this could seem not satisfactory but we remark
that the portion of the cylindrical surface taken into account for the integration is
quite large. Indeed, repeating the experiment mapping RI to a smaller portion of
the surface, the relative error decreases. Finally, comparing top and bottom images
we can also conclude that different regularity of the B-spline factor in (1) associated
with different choices of d does not significantly influence the accuracy of our rules.

Example 4 In the last example, we consider an integral of interest for the BIE
formulation of the 3D Helmholtz problem Δu + k2u = 0, where k is the
wave number defined as k = 2π/λ, with λ denoting the wavelength of the
electromagnetic radiation. The boundary of the domain of the differential problem is
assumed equal to a section of a one sheet hyperboloid which can be parametrically
represented as follows,

X(t) = (cos(πt1/4)
√

1+ t22 , sin(πt1/4)
√

1+ t22 , t2).

As in the previous example, the integration domain RI is mapped to a quarter
of the boundary of the considered section of hyperboloid whose height is 2. The
matrix A is again defined by the formula in (3) but now the function fs is assigned
as follows,

fs(t) = J (t) cos(k‖X(t)− X(s)‖2),

with k = π/2 and J defined as in (12). Note that such function is C1,1 also at t = s.
The so defined expression of (1) is the real part of the weakly singular integral to be
computed when the subtractive decomposition in (7) is applied for the Helmholtz
kernel on the considered domain and the IgA–BEM collocation approach is adopted
for the numerical solution. The results for this example are shown in Fig. 2. From the
figure we note that in this case increasing p from 2 to 3 produced a better accuracy.
The errors for the same value ofN are a bit worse than those obtained in Example 3.
This is due to the more oscillating nature of the function fs. For a different approach
to be applied in the nearly singular case with highly oscillating functions see for
instance [17].
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Fig. 2 Example 4. The convergence behavior of the absolute cubature errors errmax1,
errmax2 and errmax3 for d = 2, p = 2, (a), d = 2, p = 3 (b), d = 3, p = 2 (c) and
d = 3, p = 3 (d)

5 Conclusions

In this paper cubature rules for weakly singular double integrals containing an
explicit B-spline factor are presented. The key ideas for these formulas are the
extension of a derivative free spline quasi-interpolation scheme and of an algorithm
for spline product to the bivariate setting. Numerical results, also of interest in the
IgA-BEM setting, confirm good performances of the proposed rules.
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On DC Based Methods for Phase
Retrieval

Meng Huang, Ming-Jun Lai, Abraham Varghese, and Zhiqiang Xu

Abstract In this paper, we develop a new computational approach which is based
on minimizing the difference of two convex functions (DC) to solve a broader
class of phase retrieval problems. The approach splits a standard nonlinear least
squares minimizing function associated with the phase retrieval problem into
the difference of two convex functions and then solves a sequence of convex
minimization subproblems. For each subproblem, the Nesterov accelerated gradient
descent algorithm or the Barzilai-Borwein (BB) algorithm is adopted. In addition,
we apply the alternating projection method to improve the initial guess in [20] and
make it much more closer to the true solution. In the setting of sparse phase retrieval,
a standard �1 norm term is added to guarantee the sparsity, and the subproblem is
solved approximately by a proximal gradient method with the shrinkage-threshold
technique directly. Furthermore, a modified Attouch-Peypouquet technique is used
to accelerate the iterative computation, which leads to more effective algorithms
than the Wirtinger flow (WF) algorithm and the Gauss-Newton (GN) algorithm
and etc. Indeed, DC based algorithms are able to recover the solution with high
probability when the measurement number m ≈ 2n in the real case and m ≈ 3n in
the complex case, where n is the dimension of the true solution. When m ≈ n, the
�1-DC based algorithm is able to recover the sparse signals with high probability.
Our main results show that the DC based methods converge to a critical point
linearly. Our study is a deterministic analysis while the study for the Wirtinger
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flow (WF) algorithm and its variants, the Gauss-Newton (GN) algorithm, the trust
region algorithm is based on the probability analysis. Finally, the paper discusses
the existence and the number of distinct solutions for phase retrieval problem.

Keywords Phase retrieval · Sparse signal recovery · DC methods · Nonlinear
least squares · Non-convex analysis

1 Introduction

1.1 Phase Retrieval

The phase retrieval problem has been extensively studied in the last 40 years due
to its numerous applications, such as X-ray diffraction, crystallography, electron
microscopy, optical imaging and etc., see, e.g. [11, 16, 18, 28, 29, 31, 35]. In
particular, an explanation of the image recovery from the phaseless measurements
and a survey of recent research results can be found in [25]. Mathematically, the
phaseless retrieval problem or simply called phase retrieval problem can be stated
as follows. Given measurement vectors ai ∈ R

n (or ∈ C
n), i = 1, . . . , m and the

measurement values bi ≥ 0, i = 1, · · · ,m, we would like to recover an unknown
signal x ∈ R

n (or ∈ C
n) through a set of quadratic equations:

b1 = |〈a1, x〉|2, . . . , bm = |〈am, x〉|2. (1)

Noting that for any constant c ∈ R
n (or ∈ C

n) with |c| = 1, it holds |〈ai , cx〉|2 =
|〈ai , x〉|2 for all i. Thus we can only hope to recover x up to a unimodular constant.
We say the measurements a1, · · · , am are generic if A = (a1, . . . , am) corresponds
to a point in a non-empty Zariski open subset of Rn×m (or Cn×m). Also, b1, · · · , bm
are essential if there exist n values bj1 , · · · , bjn are all positive. One fundamental
problem in phase retrieval is to give the minimal m for which there exists A =
(a1, . . . , am) can recover x up to a unimodular constant. For the real case, it is well
known that the minimal measurement numberm is 2n−1 (cf. [4]). For the complex
case Cn, this question remains open. Conca, Edidin, Hering and Vinzant [14] proved
m ≥ 4n− 4 generic measurements a1, . . . , am have phase retrieval property for Cn

and they furthermore show that 4n−4 is sharp if n is in the form of 2k+1, k ∈ Z+.
In [38], for the case n = 4, Vinzant present 11 = 4n − 5 < 4n − 4 measurement
vectors which have phase retrieval property for C4. It implies that 4n−4 is not sharp
for some dimension n. Similar results about the minimal measurement number for
sparse phase retrieval can be found in [39].

There are many computational algorithms available to find a true signal x up
to a phase factor. It is common folklore that for given ai , i = 1, . . . , m, we may
not be able to find a solution x from any given vector b = (b1, · · · , bm) , e.g. a
perturbation of the exact observations b∗. We shall give this fact a mathematical
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explanation (see Theorem 1 in the next section). Thus, the phase retrieval problem
is usually formulated as follows:

min
x∈Rn or Cn

m∑

i=1

(|〈ai , x〉|2 − bi)2. (2)

Although it is not a convex minimization problem, the objective function is
differentiable. Hence, many computational algorithms can be developed and they
are very successful actually. A gradient descent method (called Wirtinger flow
in the complex case) is developed by Candès et al. in [12]. They show that the
Wirtinger flow algorithm converges to the true signal up to a global phase factor with
high probability provided m ≥ O(n log n) Gaussian measurements. Lately, many
variants of Wirtinger flow algorithms were developed, such as Thresholded WF[9],
Truncated WF [13], Reshaped WF [45], and Accelerated WF [8] etc. In [20], Gao
and Xu propose a Gauss-Newton (GN) algorithm to find a minimizer of (2). They
proved that, for the real signal, the GN algorithm can converge to the global optimal
solution quadratically with O(n log n) measurements starting from a good initial
guess. Indeed, Gao and Xu also provide a initialization procedure which is much
better than the initialization algorithm given in [12] numerically. Another approach
to minimize (2) is called the trust region method which was studied in [36], and the
geometric analysis of the landscape function f (x) =∑m

i=1(|〈ai , x〉|2 − bi)2 is also
given. To recover sparse signals from the measurements (1), a standard approach is
adding the �1 term λ‖x‖1 to (2) or using the proximal gradient method as discussed
in [34].

1.2 Our Contribution

In this paper, we consider a broader class of phase retrieval problem which includes
standard phase retrieval as a special case. We aim to recover x ∈ R

n (or ∈ C
n) from

nonlinear measurements

bi = f (〈ai , x〉), i = 1, . . . , m, (3)

where f : C → R+ is a twice differentiable convex function and satisfies the
following coercive condition:

f (x)→∞ when |x| → ∞.

If we take f (x) = |x|2, then it reduces to the standard phase retrieval. For another
example, we can take f (x) = |x|4 and etc. To guarantee the unique recovery of x,
it has been proved that the number of measurements satisfies m ≥ n + 1 for the
real case (2n + 1 for the complex case, respectively) (see Theorem 2.1 in [24]).
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Recovering x from the nonlinear observation is also raised in many areas, such as
neural networks (cf. [6, 32]).

To reconstruct x from (3), it is standard to formulate it as

min
x∈Rn or Cn

m∑

i=1

(f (〈ai , x〉)− bi)2. (4)

We approach it by using the standard technique for a difference of convex
minimizing functions. Indeed, for the case x ∈ R

n and ai ∈ R
n, let F(x) =∑m

i=1(f (〈ai , x〉) − bi)2 be the minimizing function. As it is not convex, we then
write it as

F(x) =
m∑

i=1

(f (〈ai , x〉)− bi)2 := F1(x)− F2(x), (5)

where F1(x) = ∑m
i=1 f

2(〈ai , x〉) + b2
i and F2(x) = ∑m

i=1 (2bif (〈ai , x〉)). Note
that f is a convex function with f (x) ≥ 0 for all x ∈ R. Then F1 and F2 are convex
functions. The minimization (4) will be approximated by

x(k+1) := arg min
x
F1(x)−∇F2(x(k)) (x− x(k)) (6)

for any given x(k). We call this algorithm as DC based algorithm following from
the ideas in [21], where the sparse solutions of under-determined linear system
were studied. Although DC based algorithms have been studied for a long time
(see e.g. [37, 41, 42] and the references therein), this is the first time to use a DC
based algorithm to solve phase retrieval problem and achieve the best numerical
performance compared to others methods from the knowledge of the authors.

The above minimization (6) is a convex problem with differentiable function for
each k. We solve it by using the standard gradient descent method with Nestrov’s
acceleration (cf. [30]) or the Barzilai-Borwein (BB) method (cf. [5]). There are
several nice properties of this DC based approach. We can show that

F(x(k+1)) ≤ F(x(k))− �‖x(k+1) − x(k)‖2

for some constant � > 0. That is, F(x(k)), k ≥ 1 is strictly decreasing sequence.
Furthermore, we can prove the sequence {x(k)}∞k=1 converges to a critical point x∗.
Using the Kurdyka-Łojasiewicz inequality, we can show ‖x(k)−x∗‖ ≤ Cτk for τ ∈
(0, 1). If the function F(x) has the property that any local minimizer x� is a global
minimizer over a neighborhoodN(x�) and the initial point x(1) is withinN(x�), then
the DC based algorithm will converge to the global minimizer linearly. Actually, the
function F(x) indeed has such a property for real phase retrieval problem and such
initial point can be obtained based on the initialization scheme discussed in [20].
Our numerical experiments show that the DC based algorithm can recover the true
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solutions whenm ≈ 2n in the real case andm ≈ 3n in the complex case. See Sect. 6
for our numerical simulations.

Furthermore, we develop an �1-DC based algorithm to recover sparse signals.
That is, starting from x(k), we solve

x(k+1) := arg min λ‖x‖1 + F1(x)− ∇F2(x(k)) (x− x(k)) (7)

using a proximal gradient method, where λ > 0 is a parameter. The convergence of
the �1-DC based algorithm can be established similar to the DC based algorithm.
To accelerate the convergence of the �1-DC based algorithm, we use Attouch-
Peypouquet’s acceleration method (cf. [2]). To have a better initialization, we use
the projection technique (cf. [17]). In addition, the hard thresholding operator is
used to project each iteration onto the set of sparse vectors. With these updates, the
algorithm works very well. The numerical experiments show that the modified �1-
DC based algorithm can recover sparse signals as long as m ≈ n provided s # n,
where s and n are the sparsity and dimension of signals.

In summary, to establish the convergence of the DC based algorithms, we follow
the well-known approach based on the Kurdyka-Łojasiewicz inequality (cf. [1, 3,
41, 43]). Due to the nice properties of F1 and F2 in the setting of phase retrieval, we
are able to specify the exponent θ in the Kurdyka-Łojasiewicz function and hence,
the rate of convergence is precisely given, see Theorem 4. More precisely, for phase
retrieval in the real case, we will show that F is strongly convex at the minimizer
due to the positive definiteness of the Hessian in Appendix. In the complex case, the
Hessian is no long positive definite but nonnegative definite near the minimizers.
For sparse phase retrieval, we are no longer able to determine θ . Thus in order to
establish the convergence rate in this settings, we break the neighborhood of the
minimizers into two parts: within the ball or outside the ball of the given tolerance.
Note that it is easy to check if an iterative point x(k+1) is within the ball or not by
checking the minimal value F(x(k+1)) ≤ ε or not. For the iterative points outside
the ε-ball, we establish the convergence rate; for the iterative points within the ball,
we no longer need to consider it, see Theorem 7.

1.3 Organization

The paper is organized as follows. Firstly, using tools of algebraic geometry, we
give the existence of solutions in phase retrieval problem and give an estimate
of how many distinct solutions in Sect. 2. In Sect. 3, we give the analysis of
convergence for our DC based algorithms. Accelerated gradient descent methods
including Nesterov’s and Attouch-Peypouquet’s accelerated techniques as well as
the BB technique for inner iterations will be discussed in Sect. 4. Furthermore, we
will study the �1-DC based algorithm for recover sparse signals and discuss the
convergence in Sect. 5. Our numerical experiments are collected in Sect. 6, where
we give the performance of our DC based algorithms and compare it with the Gauss-
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Newton algorithm for general signals and sparse signals. Particularly, we show that
the DC based algorithm is able to recover signals when m ≈ 2n. In addition, our
�1-DC based algorithm with the update techniques is able to recover sparse signals
when m ≈ n.

2 On Existence and Number of Phase Retrieval Solutions

In this section, we shall discuss the existence of solution for phase retrieval and
give an estimate for the number of distinct solutions. To beginning, we first recall
PhaseLift (cf. [10]) which shows the connection between phase retrieval and low-
rank matrix recovery.

Let X = xx and Aj = aja j , j = 1, . . . , m. Then the constrains in (1) can be
rewritten as

bj = tr(AjX), j = 1, . . . , m, (8)

where tr(·) is the trace operator.
Note that the scaling of x by a unimodular constant c would not change X.

Indeed, (cx)(cx) = |c|2xx = xx = X. Conversely, given a positive semi-
definite matrix X with rank 1, there exists a vector x such that X = xx . So the
phase retrieval problem can be recast as a matrix recovery problem (cf. [10]): Find
X ∈ M1 satisfying linear measurements: tr(AjX) = bj , j = 1, . . . , m, where
Mr = {X ∈ R

n×n : rank(X) = r}. In mathematical formulation, it aims to solve
the following low rank matrix recovery problem:

min rank(X) s.t. tr(AjX) = bj , j = 1, . . . , m and X $ 0. (9)

As we will show in Theorem 1, for given bj ≥ 0, j = 1, . . . , m there may not exist
a matrix X ∈Mr with r < n satisfying the constraint conditions exactly unless bj
are exactly the measurement values from a matrix X. Thus to find the solution X,
we reformulate the above problem as follows:

min
m∑

i=1

|tr(AjX)− bj |2 s.t. X ∈Mr and X $ 0. (10)

Since Mr is a closed set, the above least squares problem will have a bounded
solution if the following coercive condition holds:

m∑

i=1

|tr(AjX)− bj |2 →∞ when ‖X‖F →∞. (11)
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In the case that the above coercive condition does not hold, one has to use other
conditions to ensure that the minimizer of (10) is bounded. For example, if there
is a matrix X0 which is orthogonal to Aj in the sense that tr(AjX0) = 0 for all
j = 1, . . . , m, then the coercive condition will not hold as one can let X = �X0
with �→∞.

We are now ready to discuss the existence of solution for phase retrieval problem.
Let Mr be the set of n × n matrices with rank r and Mr be the set of all matrices
with rank no more than r . It is known that dimension of Mr is 2nr − r2 (cf.
Proposition 12.2 in [22]). Since Mr is the closure of Mr in the Zariski topology
(cf. [44]) and hence the dimension of Mr is also 2nr − r2. Furthermore, it is clear
that Mr is an algebraic variety. In fact, Mr is an irreducible variety which is a
standard result in algebraic geometry. To make the paper self-contain, we present a
short proof.

Lemma 1 Mr is an irreducible variety.

Proof Denote byGL(n) the set of invertible n× n matrices. Consider the action of
GL(n)×GL(n) onMn(R) given by: (G1,G2) ·M %→ G1MG

−1
2 , for allG1,G2 ∈

GL(n). Fix a rank r matrix M . Then the variety Mr is the orbit of M . Hence,
we have a surjective morphism, a regular algebraic map described by polynomials,
from GL(n) × GL(n) onto Mr . Since GL(n) × GL(n) is an irreducible variety,
so is Mr . Hence, the closure Mrg of the irreducible set Mrg is also irreducible (cf.
Example I.1.4 in [23]). ��

Define a map

A :M1 → R
m

by projecting any matrix X ∈M1 to (b1, · · · , bm) ∈ R
m in the sense that

A(X) = (tr(A1X), · · · , tr(AmX)) .

Given the map A, we define the range R+ = {A(X) : X ∈ M1, X $ 0} and
the range R = {A(X) : X ∈ M1}. It is clear that the dimension of R+ is less
than or equal to the dimension of R. Since each entry tr(AjX) of the map A is a
linear polynomial about the entries of X, then the map A is a regular. We expect
that dim(R) is less than or equal to the dimension of the M1 which is equal to
2n − 1. If m > 2n − 1, then R is not able to occupy the whole space R

m. The
Lebesgue measure of the range R is zero and hence, a randomly choosing vector
b = (b1, · · · , bm) ∈ R

m, e.g. b ∈ R
m+ will not be in R with probability one and

hence, not in R+. Thus, there will not be a solution X ∈M1 such that A(X) = b.
Certainly, these intuitions should be made more precise. To this end, we first

recall the following result from Theorem 1.25 in Sec 6.3 of [33].

Lemma 2 Let f : X → Y be a regular map and X, Y are irreducible varieties
with dim(X) = n and dim(Y ) = m. If f is surjective, then m ≤ n. Furthermore, it
holds:
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(a) for any y ∈ Y and for any component F of the fiber f−1(y), dim(F ) ≥ n−m;
(b) there exists a nonempty open subset U ⊂ Y such that dim(f−1(y)) = n − m

for y ∈ U .
We are now ready to prove

Theorem 1 If one randomly chooses a vector b = (b1, · · · , bm) ∈ R
m+ with m >

2n−1, the probability of finding a solutionX satisfying the minimization (9) is zero.
In other words, for almost all vectors b = (b1, · · · , bm) ∈ R

m+ the solution of (9)
is a matrix with rank more than or equal to 2.

Proof LetX =M1 and Y = {A(M),M ∈M1}. From Lemma 1, we knowX is an
irreducible variety. Since Y is the continuous image of the irreducible variety M1,
it is also an irreducible variety. Note that A is a regular map. By Lemma 2, we have
dim(Y ) ≤ dim(M1) = 2n− 1 < m. Thus, Y is a proper lower dimensional closed
subset in R

m. For almost all points in R
m, they do not belong to Y . In other words,

for almost all points b = (b1, · · · , bn) ∈ R
m, there is no matrixM ∈M1 such that

A(M) = b and hence, no matrixM ∈M1 withM $ 0 such that A(M) = b. ��
Note that the above discussion is still valid after replacing M1 by Mr with

r < n. Under the assumption that m > 2nr − r2, we can show that the generalized
phase retrieval problem [40] does not have a solution for randomly chosen b =
(b1, · · · , bm) ∈ R

m with probability one.
Next we define the subset χb ⊂M1 by

χb =
{
M ∈M1 : A(M) = b and A−1(A(M)) is zero dimensional

}
.

Here, a set S is said to be zero dimensional if the dimension of real points is zero for
S ⊂ R

n or the dimension of complex points is zero for S ⊂ C
n. As we are working

over the fields like R or C, it means that if the fiber is zero-dimensional, then it
has only finite number of real or complex points. For those b ∈ R

m+ with χb �= ∅,
we are interested in the upper bound of the number of solutions which satisfy the
minimization (9). To do so, we need more results from algebraic geometry.

Lemma 3 ([22] Proposition 11.12.) Let X be a quasi-projective variety and π :
X → R

m be a regular map; let Y be closure of the image. For any p ∈ X, let
Xp = π−1π(p)) ⊆ X be the fiber of π through p, and let μ(p) = dimp(Xp) be
the local dimension of Xp at p. Then μ(p) is an upper-semi-continuous function of
p in the Zariski topology on X, i.e. for any m the locus of points p ∈ X such that
dimp(Xp) > m is closed in X. Moreover, if X0 ⊆ X is any irreducible component,
Y0 ⊆ Y the closure of its image and μ the minimum value of μ(p) on X0, then

dim(X0) = dim(Y0)+ μ. (12)

As we have shown in the proof of Theorem 1, we have dim(R) ≤ dim(Mr ).
Next, we give a more precise characterization about these dimensions.
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Lemma 4 Assumem > dim(Mr ). Then dim(Mr ) = dim(R) if and only if χb �= ∅
for some b ∈ R.

Proof Assume dim(Mr ) = dim(R). From Lemma 2, there exists a nonempty open
subset U ⊂ R such that dim(A−1(b)) = 0 for all b ∈ U . This implies that χb has
finitely many points. Hence χb �= ∅.

We now prove the converse. Assume χb �= ∅. We will apply Lemma 3 by setting
X =Mr , Y = A(Mr ) and π = A. (To apply this lemma, please note that it does
not matter whether we take the closure in P

m or in C
m since Cm is an open set in P

m

and the Zariski topology of the affine space Cm is induced from the Zariski topology
of Pm. Mr is an affine variety. In particular, it is a quasi-projective variety.)

By our assumption, χb is not empty. It follows that there is a point p ∈ Y such
that π−1(p) is zero dimensional. Since zero is the least dimension possible, we have
μ = 0. Hence, using (12) above, we have dim(M1) = dim(R). ��

Finally, we need the following definition.

Definition 1 The degree of an affine or projective variety with dimension k is the
number of intersection points with k hyperplanes in general position.

It has been shown [19, Example 14.4.11] that the degree of the algebraic variety
Mr is

n−r−1∏

i=0

(
n+i
r

)
(
r+i
r

) .

In particular, the degree of M1 is

n−2∏

i=0

n+ i
1+ i . (13)

We are now ready to prove another main result in this section.

Theorem 2 Given a vector b ∈ R
m+ lies in the range R+. Assume that χb �= ∅.

Then the number of distinct solutions in χb is less than or equals to
n−2∏

i=0

n+ i
1+ i .

Proof For any fixed b, the matrices M which satisfy A(M) = b and rank(M) = 1
are exactly the intersection points of the variety M1 with m hyperplanes, namely
the hyperplanes defined by equations 〈Ai,M〉 = bi, i = 1, · · · ,m. Since m >

dim(Mr ) = 2n− 1, the number of intersection points would be less than degree of
M1 generically. So, the number of positive semidefinite matrices M which satisfy
A(M) = b and rank(M) = 1 would be no more than the degree of M1. Finally,
using the exact formula for the degree from (13), the result follows. ��
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3 A DC Based Algorithm for Phase Retrieval

For convenience, we simply discuss the case where x and aj , j = 1, . . . , m are real.
The complex case can be treated in the same way from the algorithmic perspective.
Indeed, when x ∈ C

n and aj ∈ C
n, j = 1, . . . , m, we only need to write x =

xR +
√−1xI and similar for aj . Letting u = [x R x I ] ∈ R

2n, we view F1(x) as
the function G1(u) = F1(xR +

√−1xI ). Then G1(u) is a convex function of real
variable u. Similarly, G2(u) = F2(xR +

√−1xI ) is a convex function of u. The
difference is that we can no longer recover u up to a sign but up to an orthogonal
matrix. That is, for any orthogonal matrix O ∈ R

2n×2n, the vector Ou is also the
true solution.

Recall that we aim to recover x by minimizing F(x) = F1(x) − F2(x) in (4).
It is easy to see that the minimization can happen in a bounded region R due to
the coercive condition f (x) → ∞ when x → ∞. Our DC based method is given
as follows. Start from any iterative solution x(k), we solve the following convex
minimization problem:

x(k+1) = arg min
x∈Rn F1(x)−∇F2(x(k)) (x− x(k)) (14)

for k ≥ 1, where x(1) is an initial guess. The choice of x(1) will be discussed later.
Without loss of generality, we always assume x(1) is located in a bounded region R.

Our goal in this section is to show the sequence {x(k)}∞k=1 converges to a critical
point. Later, we will discuss how to find a global minimization by choosing a good
initial guess x(1) appropriately. For a fixed x(k), there are many standard iterative
methods to solve the convex minimization problem (14), such as the gradient
descent method with various acceleration techniques. After getting x(k+1) from
solving (14), we update x(k) with x(k+1) and then solve (14) again. Hence, there
are two iterative procedures. The iterative procedure for solving (14) is an inner
iteration which will be discussed in the next section. In this section, we mainly
discuss the outer iteration assuming x(k+1) has been found.

We will state the following assumptions on functions F1 and F2:

1. The gradient function ∇F1 has Lipschitz constant L1 in bounded region R. That
is, ‖∇F1(x)−∇F1(y)‖2 ≤ L1‖x− y‖2 for all vectors x, y ∈ R.

2. F2 is a strongly convex function with parameter � in R. That is, F2(y) ≥ F2(x)+
∇F2(x) (y− x)+ �

2‖y− x‖2 for all vectors x, y ∈ R.

Observe that the function F2 = 2
∑m
i=1 bif (a

 
i x). Through a simple calculation,

the Hessian matrix of function F2 is

HF2 =
m∑

i=1

2bif
′′
(a i x)aia i ,
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where f
′′
(x) ≥ 0 since the convexity of f . Thus the parameter � of strong convexity

corresponds to the minimal eigenvalue of HF2 . In fact, we can prove that in the case
of the standard phase retrieval problem with f (x) = x2, the function F2 is strongly
convex under a standard assumption that the measurement vectors are generic and
measurement values are essential, see Theorem 8 in the Appendix. Similar result
also holds for the general phase retrieval problem with f (x) = |x|4.

We first start with a standard result for our DC based algorithm:

Theorem 3 Assume F2 is a strongly convex function with parameter �. Starting
from any initial guess x(1), let x(k+1) be the solution of (14) for all k ≥ 1. Then

F(x(k+1)) ≤ F(x(k))− �
2
‖x(k+1) − x(k)‖2, ∀k ≥ 1. (15)

Furthermore, it holds ∇F1(x(k+1))− ∇F2(x(k)) = 0.

Proof By the strong convexity of F2, we have

F2(x(k+1)) ≥ F2(x(k))+∇F2(x(k)) (x(k+1) − x(k))+ �
2
‖x(k+1) − x(k)‖2.

Recall that F(x) = F1(x)− F2(x). Combining with (14), we obtain that

F(x(k+1)) = F1(x(k+1))− F2(x(k+1))

≤ F1(x(k+1))−∇F2(x(k)) (x(k+1) − x(k))− F2(x(k))− �
2
‖x(k+1) − x(k)‖2

≤ F1(x(k))− F2(x(k))− �
2
‖x(k+1) − x(k)‖2 = F(x(k))− �

2
‖x(k+1) − x(k)‖2.

Since x(k+1) is the minima of (14), the property ∇F1(x(k+1)) − ∇F2(x(k)) = 0
follows from the first order optimality condition directly. ��

Next, we use the Kurdyka-Łojasiewicz (KL) inequality to establish the conver-
gence rate of x(k). The applications which use the KL inequality to solve various
minimization problems can be found in [1, 3, 41, 43]. The following is our major
theorem in this section.

Theorem 4 Suppose that F(x) = F1(x)−F2(x) is a real analytic function. Assume
the gradient function∇F1 has Lipschitz constantL1 > 0 and F2 is a strongly convex
function with parameter � > 0 in bounded regionR. Starting from any initial guess
x(1), let x(k+1) be the solution in (14) for all k ≥ 1. Then x(k), k ≥ 1 converges to a
critical point of F . Furthermore, if we let x∗ be the limit, then

‖x(k+1) − x∗‖ ≤ Cτk (16)

for a positive constant C and τ ∈ (0, 1).
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To prove the theorem, we need the following KL inequality which is central to
the global convergence analysis.

Definition 2 (Łojasiewicz [27]) We say a function f (x) satisfies the Kurdyka-
Lojasiewicz (KL) property at point x̄ if there exists θ ∈ [0, 1) such that

|f (x)− f (x̄)|θ ≤ Cdist(0, ∂f (x))

in a neighborhood B(x̄, δ) for some δ > 0, where C > 0 is a constant independent
of x. In other words, there exists a function ϕ(s) = cs1−θ with θ ∈ [0, 1) such that
it holds

ϕ′(|f (x)− f (x̄)|)dist(0, ∂f (x)) ≥ 1 (17)

for any x ∈ B(x̄, δ) with f (x) �= f (x̄).
This property is introduced by Lojasiewicz on the real analytic functions, which

the inequality (17) holds in a critical point with θ ∈ [1/2, 1). Later, many extensions
of the above inequality are proposed. Typically, the extension to the setting of
o-minimal structure in [26] is a general version. Recently, the KL inequality is
extended to nonsmooth subanalytic functions. For our proof in the setting of phase
retrieval, we need to specify θ = 1/2. Indeed, we shall include an elementary proof
to justify that our choice of θ = 1/2 can be achieved. To show this, we need the
following proposition.

Proposition 1 Suppose that f : Rn %→ R is a continuously twice differentiable
function whose Hessian Hf (x) is invertible at a critical point x∗ of f . Then there
exists a positive constant C, an exponent θ = 1/2 and a positive number δ such that

|f (x)− f (x∗)|θ ≤ C‖∇f (x)‖, ∀x ∈ B(x∗, δ), (18)

where B(x∗, δ) is a ball at x∗ with radius δ.

Proof Since f is continuous and twice differentiable, using Taylor formula and
noting f (x∗) = 0, we have

|f (x)− f (x∗)| ≤ c1‖x− x∗‖2, ∀x ∈ B(x∗, r)

for some r > 0. On the other hand, due to the fact the Hessian is invertible, we have

‖∇f (x)‖ = ‖∇f (x)− ∇f (x∗)‖ ≥ c2‖x− x∗‖.

Combining the above two estimates, we obtain (18) with θ = 1/2 and C = √c1/c2.
��

The importance of the Łajosiewicz inequality is to establish the inequality (18)
under the case where f may not have an invertible Hessian at the critical point x∗.
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However, for our phase retrieval problem, the Hessian matrix is restricted strong
convex at the global minimizer (cf. [36]). In the real case, we can even show that the
Hessian is positive definite at a global minimizer, see Theorem 9 in the Appendix.
We are now ready to establish Theorem 4.

Proof of Theorem 4 As we have shown in Theorem 3,

�

2
‖x(k+1) − x(k)‖2 ≤ F(x(k))− F(x(k+1)). (19)

That is, F(x(k)), k ≥ 1 is strictly decreasing sequence. Without loss of generality,
we assume

R := {x ∈ R
n, F (x) ≤ F(x(1))}.

Then the sequence {x(k)}∞k=1 ⊂ R is a bounded sequence. It means that there exists a
cluster point x∗ and a subsequence x(ki ) such that x(ki )→ x∗. Note that {F(x(k))}∞k=1
is a bounded monotonic descending sequence. Then F(x(k))→ F(x∗) for all k ≥ 1.
We claim that there exists a positive constant C1 such that

C1‖x(k+1) − x(k)‖ ≤
√
F(x(k))− F(x∗)−

√
F(x(k+1))− F(x∗) (20)

holds for all k ≥ k0 where k0 is large enough. To establish this claim, we shall use
the Proposition 1. Firstly, we prove that the condition ∇F(x∗) = 0 holds. Indeed,
from Theorem 3 we have

‖∇F(x(k))‖ = ‖∇F1(x(k))−∇F2(x(k))‖ = ‖∇F1(x(k))−∇F1(x(k+1))‖
≤ L1‖x(k) − x(k+1)‖.

Combining with (19), it gives that ‖∇F(x(ki ))‖ → 0. By the continuity of gradient
function, we have ‖∇F(x∗)‖ = 0 since x(ki )→ x∗.

Next, Theorem 9 shows that F has a positive definite Hessian near x∗. Thus the
Kurdyka-Lojasiewicz inequality holds for θ = 1/2 by Proposition 1. Consider the
function g(t) = √t which is concave over [0, 1] and hence, g(t)−g(s) ≥ g′(t)(t−
s). From the Kurdyka-Lojasiewicz inequality, there exists a positive constant c0 > 0
and δ > 0 such that

‖g′(F (x)− F(x∗))∇F(x))‖ ≥ c0 > 0 (21)

for all x in the neighborhood B(x∗, δ) of x∗. Since F(x(k))−F(x∗)→ 0 as k→∞,
there is an integer k0 such that for all k ≥ k0 it holds

max
(√

2/�, L1/(�c0)
)
·
√
F(x(k))− F(x∗) ≤ δ/2. (22)
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Recall that x(ki ) → x∗ as ki →∞. Without loss of generality, we may assume that
k0 = 1 and x(1) ∈ B(x∗, δ/2). We next show that x(k) ∈ B(x∗, δ) for all k ≥ 1 and
prove it by induction. By (22) we have

‖x(2)−x∗‖ ≤ ‖x(2)−x(1)‖+‖x(1)−x∗‖ ≤
√

2(F (x(1))− F(x∗)/�+‖x(1)−x∗‖ ≤ δ.

Assume that x(k) ∈ B(x∗, δ) for k ≤ K . Multiplying g′(F (x(k)) − F(x∗)) on both
sides of (19), we have

�

2
‖x(k+1) − x(k)‖2g′(F (x(k))− F(x∗))

≤ g′(F (x(k))− F(x∗))
(
F(x(k))− F(x(k+1))

)

≤
√
F(x(k))− F(x∗)−

√
F(x(k+1))− F(x∗), (23)

where the last inequality follows from the concavity of g. On the other hand,
combining the KL inequality (21) with Theorem 3, we have

|g′(F (x(k))− F(x∗))| ≥ c0

‖∇F(x(k))‖ =
c0

‖∇F1(x(k))− ∇F2(x(k))‖
= c0

‖∇F1(x(k))−∇F1(x(k+1))‖
≥ c0

L1‖x(k+1) − x(k)‖ .

Putting it in (23), we obtain

√
F(x(k))− F(x∗)−

√
F(x(k+1))− F(x∗) ≥ �c0

2L1
‖x(k) − x(k+1)‖ (24)

for all 2 ≤ k ≤ K . Taking the sum, it follows that

2L1

�c0

√
F(x(1))− F(x∗) ≥

K∑

j=1

‖x(j+1) − x(j)‖.

Finally, observe that

‖x(K+1) − x∗‖ ≤ ‖x(K+1) − x(1)‖ + ‖x(1) − x∗‖

≤
K∑

j=1

‖x(j+1) − x(j)‖ + ‖x(1) − x∗‖
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≤ 2L1

�c0

√
F(x(1))− F(x∗)+ ‖x(1) − x∗‖ ≤ δ,

where the last inequality follows from (22). Thus x(K+1) ∈ B(x∗, δ), which means
that all x(k) are in B(x∗, δ) and inequality (24) holds for all k. Hence, we arrive at the
claim (20) with C1 = �c0/(2L1). By summing the inequality (20) above, it follows

∑

k≥1

‖x(k+1) − x(k)‖ ≤ 1

C1

√
F(x(1))− F(x∗).

That is, x(k) is a Cauchy sequence and hence, it is convergent with x(k) → x�. Note
that ∇F(x�) = 0, which implies x(k) converges to a critical point of F .

We next turn to prove the second part. Let Sk =∑∞
i=k ‖x(i+1) − x(i)‖. It follows

from (24) that

C1Sk =
∞∑

i=k
C1‖x(i+1) − x(i)‖

≤
∞∑

i=k
(
√
F(x(i))− F(x∗)−

√
F(x(i+1))− F(x∗)) ≤

√
F(x(k))− F(x∗).

Recall from (24) that

√
F(x(k))− F(x∗) ≤ L1

2c0
‖x(k) − x(k+1)‖ = C2(Sk − Sk+1)

where C2 = L1/(2c0). Combining the two above inequality, we obtain

Sk+1 ≤ C2 − C1

C2
Sk ≤ · · · ≤ τ kS0

for τ = (C2 − C1)/(C2). Since ‖x(k) − x∗‖ ≤ Sk , we complete the proof. ��
Remark 1 We should point out that the assumptions on F,F1 and F2 in Theorem 4
are easy to satisfy. For example, in standard phase retrieval all these assumptions
are satisfied, especially when the region R is sufficiently small and near the global
minimization by a technical initialization. More details can be found in Theorems 8
and 9.

In summary, two obvious consequences are:

1. For any given initial point x(1), letD = F(x(1))−F(x�) > 0, where x� is one of
the global minimizer of (5). Then
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F(x(k))− F(x�) ≤ D − �
2

k−1∑

j=1

‖x(j+1) − x(j)‖2.

That is, x(k) is closer to one of global minimizer than the initial guess point.
2. As our approach can find a critical point, if a global minimizer x� is a local

minimizer over a neighborhood N(x�) and an initial vector x(1) is in N(x�), then
our approach finds x�.

Example 1 In this example, we consider the standard phase retrieval problem where
f (x) = |x|2. Assume the measurements are Gaussian random vectors. It has been
shown that one can use the initialization from [13, 20] to find an excellent initial
vector. More specifically, to recover a vector x ∈ R

n (or x ∈ C
n), if the number of

measurements m ≥ O(n), then with high probability we have

‖x(1) − x∗‖2 ≤ δ‖x∗‖2,

where x∗ is a global minimizer and δ is a sufficient positive constant. Furthermore,
in a small neighborhood N(x�, δ) := {x : ‖x− x∗‖2 ≤ δ‖x∗‖2}, the minimizing
function F(x) is strongly convex [36]. Thus, our algorithm can converge to the
global minimizer by using a good initialization.

4 Computation of the Inner Minimization (14)

We now discuss how to compute the minimization (14). For convenience, we rewrite
the minimization in the following form

min
x∈Rn G(x) (25)

for a differentiable convex functionG(x) := F1(x)−〈∇F2(x(k)), x−x(k)〉. The first
approach is to use the gradient descent method:

z(j+1) = z(j) − h∇G(z(j)) (26)

for j ∈ N with z(1) = x(k), where h > 0 is the step size. It is well-known that if we
choose h ≈ 1/(2L) where L is the Lipschitz constant of G(x), the gradient descent
method (26) will have a linear convergence. It has also been shown that if we choose
h = ν/L with Lipschitz constant L and the strong convex parameter ν, the Nesterov
acceleration technique will speed up the convergence rate. Some results are given
as follows.

Lemma 5 (Nesterov’s Acceleration [30]) Let f : Rn → R be a ν-strong convex
function and the gradient function has L-Lipschitz constant. Start from an arbitrary
initial point u1 = z1, the following Nesterov’s accelerated gradient descent
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z(j+1) : = u(j) − ν

L
∇f (u(j)),

u(j+1) = z(j+1) − q(z(j+1) − z(j)) (27)

satisfies

f (z(j+1))− f (z∗) ≤ ν + L
2

‖z(1) − z∗‖2 exp(− j√
L/ν

), (28)

where z∗ is the optimal solution and q = (√L/ν − 1)/(
√
L/ν + 1) is a constant.

The role of Nesterov’s acceleration is to reduce the number of iterations in (26)
significantly. That is, for any tolerance ε, we need O(1/ε) number of iterations for
the gradient descent method due to the linear convergence, butO(1/

√
ε) number of

iterations if Nesterov’s acceleration (27) is used.
Since G is twice differentiable, we can certainly use the Newton method to

solve (14) because of its quadratic convergence. However, we will not pursue it
here due to the fact that when the dimension of z is large, the Newton method will
be extremely slow. Instead, we apply the Barzilai-Borwein (BB) method to choose
a good h, which is an excellent approach for the large scale minimization problem
(cf. [5]). The iteration of the BB method can be described as

z(j+1) = z(j) − β−1
j ∇G(z(j)), (29)

where the step size

βj = (z(j) − z(j−1)) (∇G(z(j))−∇G(z(j−1)))/‖z(j) − z(j−1)‖2. (30)

Algorithm 1 The BB Algorithm for the Inner Minimization

Let u(1) = z(1) be an initial guess.
For j ≥ 1, we solve the minimization of (25) by computing βj according to (30).
Update

z(j+1) : = u(j) − β−1
j ∇G(u(j))

u(j+1) = z(j+1) − q(z(j+1) − z(j)) (31)

until a maximum number T of iteration is achieved.
return uT

Our computation of inner minimization is described in Algorithm 1, which is
a combination of the BB technique with Nesterov’s acceleration technique. The
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intuition behind it based on Lemma 5. Since BB method has a good performance in
numerical experiment, we can hope our Algorithm 1 has better performance.

There are several modified versions of the BB method available with their
convergence analysis in the literature, see, e.g. [15, 46] and the references therein.
Although a large number of numerical experiments show that the BB method has
excellent performance, however, the convergence rate is still not established yet
for general minimizing function F . We next give some necessary and sufficient
conditions to show why the Algorithm 1 has a better convergence rate. To this end,
we say a algorithm is convergent superlinearly if

σk = ‖u(k+1) − u∗‖
‖u(k) − u∗‖ → 0, when k→∞.

To analyze the convergence of the BB method in our setting, let sk+1 = u(k+1)−u(k)

and yk+1 = ∇G(u(k+1))− ∇G(u(k)).
Lemma 6 Suppose that the function G(x) in (25) is α-strongly convex and the
gradient has Lipschitz constant L in a domainD. Let u∗ ∈ D. Assume the sequence
{u(k), k ≥ 1} is obtained from the BB method and remains in D. Then {u(k), k ≥ 1}
converges super-linearly to u∗ if and only if (βk −HG(u∗))sk+1 = o(‖sk+1‖).
Proof From BB update rule (29), we have

(
βk −HG(x∗)

)
sk+1 = −∇G(u(k))−HG(u∗)sk+1

= ∇G(u(k+1))− ∇G(u(k))−HG(u∗)sk+1 − ∇G(u(k+1)). (32)

Since the Hessian matrix HG(u) is continuous at u∗ and all u(k) ∈ D, then we have

∇G(u(k+1))− ∇G(u(k))−HG(u∗)sk+1 → 0, k→∞.

By the assumption that (βk −HG(u∗))sk+1 = o(‖sk+1‖), it implies that

lim
k→∞

||∇G(u(k+1))||
||sk+1|| = 0. (33)

Note that

‖∇G(u(k+1))−G(u(k))‖ ≤ L‖u(k+1) − u(k)‖

and

||∇G(u(k+1))|| = ||∇G(u(k+1))−∇G(u∗)|| = ||HG(ξk)(u(k+1)−u∗)|| ≥ α‖u(k+1)−u∗||

for u(k+1) ∈ D, where ξk in D. Then, we have
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||∇G(u(k+1))||
||yk+1|| ≥ α||u(k+1) − u∗||

L||u(k+1) − u∗|| + L||u(k) − u∗|| =
ασk

L(1+ σk) ,

where σk = ||u(k+1) − u∗||
||u(k) − u∗|| . It follows that

σk

1+ σk → 0 and hence, σk → 0. That

is, the BB method converges super-linearly.
On the other hand, if σk → 0, we can show that (βk−HG(u∗))sk+1 = o(‖sk+1‖).

In fact, if u(k)→ u∗ super-linearly, then we have

lim
k→+∞

‖u(k+1) − u(k)||
||u(k) − u∗|| = 1. (34)

Indeed, since

∣∣∣||u(k+1) − u(k)|| − ||u(k) − u∗||
∣∣∣ ≤ ||u(k+1) − u∗||,

it is clear that
∣∣∣∣∣
||u(k+1) − u(k)||
||u(k) − u∗|| − 1

∣∣∣∣∣ ≤
||u(k+1) − u∗||
||u(k) − u∗|| → 0.

Hence, from (34) it follows

||∇G(u(k+1))||
||sk+1|| ≤ ||∇G(u(k+1))− ∇G(u∗)||

||sk+1|| ≤ L‖u
(k+1) − u∗‖

‖u(k+1) − u(k)‖
= σk+1

‖u(k+1) − u(k)‖/‖u(k) − u∗‖ → 0

because of the denominator is bounded by the property (34). Using the argument at
the beginning of the proof, we can see that (βk − HG(u∗))sk+1 = o(‖sk+1‖). This
completes the proof. ��

5 Sparse Phase Retrieval

In previous sections, several computational algorithms have been developed for the
phase retrieval problem based on measurements (1). We now extend the approaches
to study the sparse phase retrieval. Suppose that xb is a sparse solution to the given
measurements (1). We want to recover xb using the DC based algorithm. Firstly, we
consider the following optimization
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min
x∈Rn or Cn

λ‖x‖1 +
m∑

i=1

(f (〈ai , x〉)− bi)2, (35)

which is a standard approach in compressive sensing by adding λ‖x‖1 to (2). If we
take f (〈ai , x〉) = |〈ai , x〉|2, then (35) becomes as the sparse phase retrieval. See [6]
and [34] for recent literature on sparse phase retrieval problem.

We now discuss how to solve it numerically. We approach it by using a similar
method as in the previous section. Indeed, for the case x ∈ R

n and ai ∈ R
n, we

rewrite
∑m
i=1(f (〈ai , x〉)− bi)2 to be the difference of F1(x)− F2(x) as in (5). The

minimization (35) will be approximated by

x(k+1) := arg min λ‖x‖1 + F1(x)−∇F2(x(k)) (x− x(k)) (36)

for any given x(k). We call this algorithm as sparse DC based method. For the general
convex function f , we can also obtain the minimization problem as in (36) with the
similar formulation. For convenience, we only consider the case when x, aj , j =
1, . . . , m are real. The complex case can be treated in the same way.

To solve (36), we use the proximal gradient method: for any given y(k), we update
it by

y(k+1) := argmin λ‖y‖1 + F1(y(k))+ (∇F1(y(k))−∇F2(y(k))) (y− y(k))

+L1
2 ‖y− y(k)‖2 (37)

for k ≥ 1, where L1 is the Lipschitz differentiability of F1. This is a typical DC
algorithm discussed in [41]. The above minimization can be easily solved by using
shrinkage-thresholding technique as in [7]. Note that Beck and Teboulle in [7] use a
Nesterov’s acceleration technique to speed up the iteration to form the well-known
FISTA. However, we shall use the acceleration technique from [2] which is slightly
better than Nesterov’s technique. The discussion above furnishes a computational
method for sparse phase retrieval problem (35). Let us point out one significant
difference between update rule (37) and (14) is that one can find y(k+1) by using
a explicit formula while the solution x(k+1) of (14) has to be computed using an
iterative method as explained before. Thus the sparse phase retrieval is more efficient
in this sense.

Let us study the convergence of our sparse phase retrieval method. To the best of
the authors’ knowledge, the convergence is not available in the literature so far. We
first start with a standard result for the �1-DC based algorithm.

Theorem 5 Assume F2 is a strongly convex function with parameter �. Starting
from any initial guess y(1), let y(k+1) be the solution of (37) for all k ≥ 1. Then it
holds

λ‖y(k+1)‖1 + F(y(k+1)) ≤ λ‖y(k)‖1 + F(y(k))− �
2
‖y(k+1) − y(k)‖2, ∀k ≥ 1

(38)
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and

∂g(y(k+1))+ ∇F1(y(k))−∇F2(y(k))+ L1(y(k+1) − y(k)) = 0,

where g(x) = λ‖x‖1 and ∂g denotes the subgradient of g.

Proof The Lipschitz differentiability of F1 gives

F1(y(k+1)) ≤ F1(y(k))+ ∇F2(y(k)) (y(k+1) − y(k))+ L1

2
‖y(k+1) − y(k)‖2,

where L1 is the Lipschitz differentiability of F1. By the strongly convexity of F2,
we have

F2(y(k+1)) ≥ F2(y(k))+∇F2(y(k)) (y(k+1) − y(k))+ �
2
‖y(k+1) − y(k)‖2.

Combing the above two inequalities and using used the first order optimality
condition for (37), we obtain that

λ‖y(k+1)‖1 + F(x(k+1)) = λ‖y(k+1)‖1 + F1(y(k+1))− F2(y(k+1))

≤ λ‖y(k+1)‖1 + F1(y(k))+∇F1(y(k)) (y(k+1) − y(k))+ L
2
‖y(k+1) − y(k)‖2

−F2(y(k))− ∇F2(y(k)) (y(k+1) − y(k))− �
2
‖y(k+1) − y(k)‖2

= F1(y(k))− F2(y(k))− �
2
‖y(k+1) − y(k)‖2

+λ‖y(k+1)‖1 + (∇F1(y(k))−∇F2(y(k)) (y(k+1) − y(k))+ L
2
‖y(k+1) − y(k)‖2

≤ F1(y(k))− F2(y(k))− �
2
‖y(k+1) − y(k)‖2 + λ‖y(k)‖1

= λ‖y(k)‖1 + F(y(k))− �
2
‖y(k+1) − y(k)‖2.

Letting g(x) = λ‖x‖1, the second property ∂g(y(k+1))+ ∇F1(y(k))− ∇F2(y(k))+
L1(y(k+1) − y(k)) = 0 follows from the minimization (37). ��

Next we show that the sequence y(k), k ≥ 1 from (37) converges to a critical
point y∗.

Theorem 6 Write F(x) = λ‖x‖1 +∑m
i=1(f (〈ai , x〉) − bi)2. Suppose that f (x)

is a real analytic function and the gradient ∇f (x) has Lipschitz constant L. Let
y(k), k ≥ 1 be the sequence obtained from (37). Then it converges to a critical point
y∗ of F .

Proof From Theorem 5, we have
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�

2
‖y(k+1) − y(k)‖2 ≤ F(y(k))− F(y(k+1)). (39)

That is, F(y(k)), k ≥ 1 is a strictly decreasing sequence. Due to the coerciveness,
we know that

R := {x ∈ R
n,F(y) ≤ F(y(1))}

is a bounded set. It follows that the sequence {y(k)}∞k=1 ⊂ R is a bounded sequence
and there exists a cluster point y∗ and a subsequence y(ki ) such that y(ki ) → y∗.
Note that {F(y(k))}∞k=1 is a bounded monotonic descending sequence, and hence
F(y(k)) → F(y∗) for all k ≥ 1. We claim that the sequence {y(k)}∞k=1 has finite
length, that is,

∞∑

k=1

‖y(k+1) − y(k)‖ <∞. (40)

To establish the claim, we need to use the Kurdyka-Łojasiewicz inequality (cf. [26]).
Note that the �1 norm ‖x‖1 is semialgebraic function and the function f (x) is
analytic, so the objective function F(x) satisfies the KL property at any critical
point (cf. [1, 3, 43]). Let us prove that ‖∇F(y∗)‖ = 0 holds, that is, y∗ is a critical
point of F . Indeed, using the second property of (5), we have

‖∂F(y(k))‖ = ‖∂g(y(k))+∇F1(y(k))− ∇F2(y(k))‖
≤ ‖∇F(y(k))− ∇F(y(k−1))‖ + L1‖y(k) − y(k−1)‖. (41)

Combining (39) with (41) and using the Lipschitz differentiation of F1 and F2, we
obtain that ‖∂F (y(ki ))‖ → 0. By the property of subgradient of g and the continuity
of the gradients F1 and F2, we have ‖∂F(y∗)‖ = 0 when y(ki ) → y∗. Thus, y∗ ∈
domain(∂F ), the set of all critical points of F .

Therefore, we can use KL inequality to obtain that

ϕ′(F(y)− F(y∗))‖∂F(y)‖ ≥ 1 (42)

for all y in the neighborhood B(y∗, δ). As F(y(k))− F(y∗)→ 0, k→∞, there is
an integer k0 such that for all k ≥ k0 it holds

max

(√
2/�
√
F(y(k))− F(y∗), 2C/� · ϕ(F(y(k))− F(y∗))

)
≤ δ/2. (43)

Without loss of generality, we may assume that k0 = 1 and y(1) ∈ B(y∗, δ/2). Let
us show that y(k), k ≥ 1 will be in the neighborhood B(y∗, δ). We shall use an
induction to do so. By (43) we have
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‖y(2)−y∗‖ ≤ ‖y(2)−y(1)‖+‖y(1)−y∗‖ ≤
√

2(F(y(1))− F(y∗)/�+‖y(1)−y∗‖ ≤ δ.

Assume that y(k) ∈ B(y∗, δ) for k ≤ K . From (5), we have

‖∂F(yk+1)‖ = ‖∂g(yk+1)+∇F(yk+1)‖
= ‖∇F(yk+1)−∇F(yk)− L1(yk+1 − yk)‖ ≤ C‖yk+1 − yk‖,

where constant C := L+ L1/2. Putting it into (42), it gives that

ϕ′(F(yk)− F(y∗)) ≥ 1

C‖yk − yk−1‖ . (44)

On the other hand, from the concavity of ϕ we get that

ϕ(F(yk)−F(y∗))−ϕ(F(yk+1)−F(y∗)) ≥ ϕ′(F (yk)−F(y∗))(F (yk)−F(yk+1)).

Combining (39) with (44), we obtain

ϕ(F(yk)− F(y∗))− ϕ(F(yk+1)− F(y∗)) ≥ �

2C
· ‖y

k+1 − yk‖2

‖yk − yk−1‖ .

Multiplying ‖y(k) − y(k−1)‖ on both sides of the above inequality and using a
standard inequality 2ab ≤ a2 + b2 on the left side, we have

‖y(k)−y(k−1)‖+ 2C

�
(ϕ(F(yk)−F(y∗))−ϕ(F(yk+1)−F(y∗))) ≥ 2‖y(k)−y(k+1)‖

for all 2 ≤ k ≤ K . It follows that

2C

�
ϕ(F(y(1))− F(y∗)) ≥

K∑

j=1

‖y(j+1) − y(j)‖ + ‖y(K+1) − y(K)‖. (45)

That is, we have

‖y(K+1)−y∗‖ ≤ ‖y(K+1)−y(1)‖+‖y(1)−y∗‖ ≤
K∑

j=1

‖y(j+1)−y(j)‖+‖y(1)−y∗‖

≤ 2C

�
ϕ(F(y(1))− F(y∗))+ ‖y(1) − y∗‖ ≤ δ.

That is, y(K+1) ∈ B(y∗, δ) which implies that all y(k) are in B(y∗, δ). From the
above arguments, we know that the inequality (45) holds for all k, which implies
the claim (40) holds. It is clear that (40) implies that {y(k)}∞k=1 is a Cauchy sequence
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and hence, it is convergent with y(k) → y�. Note that ∇F(y�) = 0, which implies
y(k) converges to a critical point of F . ��

Finally, we show that the convergence rate is linear. To beginning, we give the
following technical lemma.

Lemma 7 Let g(x) = λ‖x‖1 for λ > 0. Then for any x, there exists a δ > 0 such
that for any y ∈ B(x, δ), there exists a subgradient ∂g at y such that

(∂g(y)− ∂g(x)) (y− x) = 0. (46)

Proof For simplicity, we only consider x ∈ R
1. Then if x �= 0, we can find

δ = |x| > 0 such that when y ∈ B(x, δ), we have ∂g(y) = ∂g(x) and hence, we
have (46). If x = 0, for any y �= 0, we choose ∂g(0) according to y, i.e. ∂g(0) = 1
if y > 0 and ∂g(0) = −1 if y < 0. Then we have (46). ��

In the following lemma, we need the sparse set Rs

Rs := {x ∈ R
n : ‖x‖0 ≤ s} =

⋃

I⊂{1,··· ,n}
|I |=s

R
s
I , (47)

which is the union of all canonical subspaces R
s
I = span{ei1 , · · · , eis } if I =

{i1, i2, · · · , is}.
Lemma 8 Let F(x) = g(x) + F(x) with g(x) = λ‖x‖1. Suppose that F is L-
Lipschitz differentiable. Let x∗ be a critical point of F as explained in (6). Suppose
that either all entries of x∗ are nonzero or x∗ ∈ R

s
I for some s ∈ {1, · · · , n}. Then

there exists δ > 0 such that for all x ∈ B(x∗, δ),

|F(x)− F(x∗)| ≤ C‖x− x∗‖2. (48)

Proof Under the assumption that either all entries of x∗ are nonzero or x∗ ∈ R
s
I for

some s ∈ {1, · · · , n}, we know that F(x) is differentiable at x∗. Since x∗ is a critical
point, we have

∂F(x∗) = ∂g(x∗)+∇F(x∗) = 0.

Combing it with (36), we obtain

F(x)− F(x∗) = g(x)− g(x∗)+ F(x)− F(x∗)
≤ ∂g(x) (x− x∗)+ ∇F(x∗)(x− x∗)+ 1

2
(x− x∗) ∇2F(ξ)(x− x∗)

= (∂g(x)− ∂g(x∗)) (x− x∗)+ 1

2
(x− x∗) ∇2F(ξ)(x− x∗)

= 1

2
(x− x∗) ∇2F(ξ)(x− x∗),
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where ξ is a point in between x∗ and x. That is, |F(x)− F(x∗)| ≤ C‖x− x∗‖2 for
a positive constant C. ��

We are now ready to establish the following result on the rate of convergence.

Theorem 7 Suppose that F2 is strongly convex. Starting from any initial guess x(1),
let x(k+1) be the solution of (14) for all k ≥ 1. Then for any ε > 0, there exists a
point x∗ such that either x(k+1) ∈ B(x∗, ε) or

‖x(k+1) − x∗‖ ≤ Cετk (49)

for a positive constant Cε dependent on ε and τ ∈ (0, 1).
Proof As we have shown in Theorems 5 and 6, the sequence x(k), k ≥ 1 converges
to a critical point x∗ of F . Furthermore, we have

C0‖x(k+1) − x(k)‖2 ≤ (F(x(k))− F(x∗))− (F(x(k+1))− F(x∗)) (50)

for a positive constant C0. We now claim that

C1‖x(k+1) − x(k)‖ ≤
√
F(x(k))− F(x∗)−

√
F(x(k+1))− F(x∗) (51)

holds for a positive constant C1. To establish this claim, we first note that Lemma 8
gives

1√
F(x(k))− F(x∗)

≥ C

‖x(k) − x∗‖ .

Multiplying the above inequality to (50), we have

C0C
‖x(k+1) − x(k)‖2

‖x(k) − x∗‖ ≤ (F(x
(k))− F(x∗))− (F(x(k+1))− F(x∗))√

F(x(k))− F(x∗)
. (52)

Consider h(t) = √
t which is concave over [0, 1] and we know h(t) − h(s) ≥

h′(t)(t − s). Thus, the right-hand side above is less than or equal to the right-hand
side of (51). We next show that the left-hand side of the inequality satisfies

‖x(k+1) − x(k)‖
‖x(k) − x∗‖ ≥ ‖x(k+1) − x(k)‖

‖x(k+1) − x∗‖ + ‖x(k+1) − x(k)‖ .

Note that F is strongly convex outside the ball B(x∗, ε). If x(k+1) is within the
B(x∗, ε), then we complete the proof. Otherwise, the strong convexity of F outside
B(x∗, ε) (see Theorem 9 for the real case and Theorem 10 for the complex case)
gives
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Cε‖x(k+1) − x∗‖ ≤ ‖∇F(x(k+1))− ∇F(x∗)‖

for a positive constant dependent on ε. As ∂g(x∗)+∇F(x∗) = 0, Lemma 7 implies
that −∇F(x∗) = ∂g(x∗) = ∂g(x(k+1)) when x(k+1) is close to x∗ enough (i.e., the
support of x(k+1) is the same as the support of x∗ and the sign of each entry in x(k+1)

is the same to x∗). By Theorem 5, we have

∂F (x(k+1))− ∂F (x∗) = ∇F(x(k+1))−∇F(x(k))− L1(x(k+1) − x(k)).

In other words, using the Lipschitz differentiability of F , it holds

Cε‖x(k+1) − x∗‖ ≤ (L+ L1)‖x(k+1) − x(k)‖

and

‖x(k+1) − x(k)‖
‖x(k) − x∗‖ ≥ ‖x(k+1) − x(k)‖

((L+ L1)/Cε + 1)‖x(k+1) − x(k)‖ =
Cε

L+ L1 + Cε .

The left-hand side of (52) can be simplified to be

C0C
Cε

L1 + L+ 1
‖x(k+1) − x(k)‖,

which implies the claim (51) holds. By summing the inequality (51), it follows

∑

k≥1

‖x(k+1) − x(k)‖ ≤ 1

C1

√
f (x(1))− f (x∗).

Then the remaining part of the proof is similar to the proof of Theorem 4 and we
leave the details to the interested readers. ��

6 Numerical Results

In this section, we give some numerical experiments for our DC based algorithm
and the �1-DC based algorithm. We compare the empirical success rate of our DC
based algorithms with WF [9] and Gauss-Newton [20] methods. All experiments
are carried out with 1000 repeated trials. The results show that the DC based
algorithm is able to recover real signals with probability around 80% with m ≈ 2n
measurements, where n is the dimension of signals. As demonstrated in [13], more
precisely the Figures 8 and 9 in [13], it needs m ≈ 3n measurements to recover real
signals for truncated Wirtinger flow and Wirtinger flow algorithms. Similarly, the
DC based algorithm can recover the complex signals with m ≈ 3n measurements
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(cf. Table 2) while WF requires m ≈ 4n. Finally, for the sparse signals, the �1-DC
based algorithm with thresholding technique needs only m ≈ n measurements.

6.1 Phase Retrieval for Real and Complex Signals

Example 2 In this example, we consider to recover a real signal xb from the given
measurements (1) using Gaussian random measurement vectors aj , j = 1, · · · ,m.
We fix n = 128 and consider the number of measurements m is around twice the
dimension of xb, i.e., m = kn/16 for k = 24, 25, · · · , 35. For the initialization, we
first obtain a initial guess by the initialization algorithm in [20] and then improve
the initial guess by applying alternating projection method discussed in Algorithm 3.
We say a trail is successful if the relative error is less than 10−5. Table 1 gives the
empirical success rate of recovering xb for DC, WF and Gauss-Newton methods.
From Table 1, we can see that the DC based algorithm can recover the solutions
with probability large than 60% under m ≥ 2n. According to the result in [4], one
needs m ≥ 2n− 1 measurements to guarantee the recovery of all real signals. Thus
the DC based algorithm almost reaches the theoretical low bound.

Example 3 We next repeat Example 2 using a litter more number of measurements.
The numbers of successes for the Wirtinger Flow algorithm, Gauss-Newton algo-
rithm and the DC based algorithm are shown in Table 2. One can see that the
performance of the DC based algorithm is the best and can achieve 95% success
rate with m = 2.5n.

Example 4 This example is to show the robustness of the DC based algorithm. We
repeat the computation in Example 2 for noisy measurements. There are two ways
to generate the noisy measurements. One way is to add the noises ηj to bj directly
and obtain

Table 1 The numbers of successes over 1000 repeated trials versus the number of measurements
m/n listed above

m/n 1.5 1.5625 1.6250 1.6875 1.75 1.8125 1.875 1.9375 2 2.0625 2.125 2.1875

WF successes 0 0 0 0 0 1 11 10 24 27 41 64

GN successes 0 0 0 18 13 36 71 114 167 251 315 415

DC successes 50 78 119 182 266 318 406 542 600 681 744 807

Table 2 The numbers of successes over 1000 repeated trails versus the number of measurements
m/n listed above, where n = 128

m/n 2.4375 2.5 2.5625 2.625 2.6875 2.75 2.8125 2.875 2.937 3

WF successes 168 220 254 352 372 459 513 612 641 706

GN successes 728 749 844 886 908 934 931 963 968 982

DC successes 944 952 975 982 984 989 994 993 995 998
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b̂j = |〈aj , xb〉|2 + ηj , j = 1, · · · ,m. (53)

Another way is

b̃j = |〈aj , xb〉 + δj |2 + ηj , j = 1, · · · ,m, (54)

where δj and ηj are noises. For noisy measurements (53), we assume that ηj are
subject to uniform random distribution between [−β, β] with mean zero, where
β = 10−1, 10−3 and 10−5. If the stopping tolerance ε satisfies ε ≥ β, then the
Gauss-Newton method and DC based method produce the same empirical success
rate as in Table 2. For noisy measurements (54), we assume that both εj and δj
are subject to uniform distribution between [−β, β] with mean zero. Similarly, if
the stopping tolerance ε satisfies ε ≥ β, then both algorithms can recover the true
solution.

Example 5 In this example, we use the DC based algorithm and the Gauss-Newton
method to recover the complex signals. We choose n = 128 and the number of
measurements m is around 3n, i.e., m ≈ 3n. For Gaussian random measurements
aj = aj,R + iaj,I , j = 1, · · · ,m, we aim to recover z ∈ C

n with z = x + iy
from |〈aj , z〉|2, j = 1, · · · ,m. The maximum iteration numbers for WF, GN, DC
are 3000, 100 and 1000, respectively. We say a trial is successful if the relative error
is less than 10−5. Table 3 gives the numbers of successes for WF, Gauss-Newton
and the DC based methods with 1000 repeated trials. From the Table 3, we can
see that the DC based algorithm can recover the complex signals very well when
m ≥ 3n, which is slightly better than the GN algorithm and much better than the
WF algorithm.

We next present some numerical experiments to demonstrate that the �1-DC
based algorithm works well. The procedure is presented in Algorithm 2, where a
modified Attouch-Peypouquet technique [2] is used. We use the step size βk =
k/(k+ α) for the first few k iterations, say k ≤ K , and then a fixed step size βK for
the remaining iterations.

Example 6 In this example, we test the performance of Algorithm 2 for recovering
the real signals without sparsity. We choose n = 128 and the number of
measurementsm = 1.1n, 1.2n, . . . , 2.5n. The target signal xb and the measurement
vectors aj , j = 1, . . . , m are Gaussian random vectors. We choose the parameter
λ = 10−5 in Algorithm 2. The numbers of successes are summarized in Table 4.

Table 3 The numbers of successes over 1000 repeated trials based on m/n listed above for
complex case

m/n 2.938 3 3.062 3.125 3.187 3.25 3.312 3.375 3.437 3.5 3.562 3.625 3.687 3.75

WF 0 0 0 0 0 0 0 0 0 56 192 204 322 401

GN 191 338 304 416 452 536 594 739 744 762 801 815 910 912

DC 422 563 537 565 623 730 829 887 881 894 954 946 981 986
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Algorithm 2 �1-DC Based Algorithm
We use the same initialization as in the previous examples.
while k ≥ 1 do

1◦ Solve (37) to get y(k+1).
2◦ Apply a modified Attouch-Peypouquet technique to get a new y(k+1)

until the maximal number of iterations is reached.
end while
return yT

Table 4 The numbers of successes over 1000 repeated trials based on Algorithm 2

m/n 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

�1-DC alg. 0 0 206 317 352 557 724 913 938 947 994

The results show that the �1-DC based algorithm can recover the real signals with
high probability if m ≥ 2.2n.

6.2 Phase Retrieval of Sparse Signals

We next turn to consider how to use our �1-DC based algorithm to recover the sparse
signals. We know that if the number of measurements m ≤ 2n, then many existing
algorithms will fail to recover the signals. For our DC based algorithm, it can recover
any signal whenm ≈ 2n, no matter sparse or not. However, whenm ≈ 1.5n, we are
not able to recover the general signals. The purpose of our numerical experiments
is to see if we are able to recover the sparse signals when m ≈ n. By using the
sparsity, we will enhance the �1-DC based algorithm with the projection technique.
More specifically, we use the hard thresholding technique to project y(k+1) from (7)
into the set of all s-sparse vectors. This leads to an �1-DC based algorithm with hard
thresholding which given below.

Algorithm 3 �1-DC Based Algorithm with Hard Thresholding
Obtain a initial guess with the initialization in [9].
while k ≥ 1 do

Solve (37) using the shrinkage-thresholding technique to get y(k+1).
Apply a modified Attouch-Peypouquet technique to get a new y(k+1).
Project y(k+1) into the collection of s-sparse set Rs . That is, let z(k+1) be the solution of the
following minimization problem:

σ s(xk) = min
z∈Rs

‖y(k+1) − z‖1. (55)

Update y(k+1) = z(k+1).
end while
return the maximal number of iterations yT
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Table 5 The numbers of successes with sparsities s = 2, 4, 5, 10, 20 over 1000 repeated trials

m/n 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Alg. 3 s = 2 422 517 566 619 662 710 745 829 846 837 833 849 862 870 877 946

Alg. 3 s = 4 187 333 429 474 590 673 693 747 778 811 819 832 840 862 873 919

Alg. 3 s = 5 71 116 264 383 452 594 618 674 726 771 802 821 837 858 869 894

Alg. 3 s = 10 0 0 0 52 151 247 416 385 537 482 590 680 701 737 796 812

Alg. 3 s = 20 0 0 0 0 0 55 156 180 227 271 368 422 451 527 574 599

Example 7 In this example, we show that our �1-DC based algorithm with hard
thresholding works well. We choose n = 128 and the number of measurements
m = 0.5n, 0.6n, . . . , 2n. For each m, we test the performance of Algorithm 3
with sparsities s = 2, 4, 5, 10, 20. The experiments are implemented under 1000
repeated trials. The results on the numbers of successes are presented in Table 5.
From Table 5, we can see that Algorithm 3 is able to recover sparse solutions with
high probability.
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Appendix

In this section we give some deterministic description of the minimizing function
F as well as strong convexity of F2. We will show that at any global minimizer,
the Hessian matrix of F is positive definite in the real case and is nonnegative
positive definite in the complex case. These results are used when we apply the
KL inequality. For convenience, let A� = a�ā � be the Hermitian matrix of rank one
for � = 1, · · · ,m.

Definition 3 We say aj , j = 1, · · · ,m are a0-generic if there exists a positive
constant a0 ∈ (0, 1) such that

‖(a∗j1 y, . . . , a∗jny)‖ ≥ a0‖y‖, ∀y ∈ C
n

holds for any 1 ≤ j1 < j2 < · · · < jn ≤ m.

Theorem 8 Letm ≥ n. Assume aj , j = 1, · · · ,m are a0-generic for some constant
a0. If there exist n nonzero elements among the measurements bj , j = 1, · · · ,m,
then for the phase retrieval problem with f (x) = |x|2, F2 is positive definite.

Proof Recall that F2 = 2
∑m
i=1 bif (a

 
k x). Then the Hessian matrix of F2 is
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HF2(x) = 2
m∑

i=1

bif
′′(a k x)aia i .

Note that f ′′(x) = 2. Thus we have

HF2(x) = 4
m∑

�=1

b�A�.

Let b0 = min{b� �= 0}. Then

y HF2(x)y ≥ 4b0‖(a∗j1 y, . . . , a∗jny)‖2 ≥ 4b0a
2
0‖y‖2.

Thus, F2 is strongly convex. ��
Theorem 9 Let HF (x) be the Hessian matrix of the function F(x) and let x� be
a global minimizer of (2). Suppose that aj , j = 1, · · · ,m are a0-generic. Then
HF (x�) is positive definite in a neighborhood of x∗.

Proof Recall that A� = a�ā � for � = 1, · · · ,m. It is easy to see

∇F(x) = 2
m∑

�=1

(x A�x− b�)A�x

and the entries hij of the Hessian HF (x) is

hij = ∂

∂xi

∂

∂xj
f (x) = 2

m∑

�=1

(x A�x− b�)aij (�)+ 4
n∑

p=1

ai,p(�)xp

n∑

q=1

aj,q(�)xq,

where A� = [aij (�)]nij=1. Since (x∗) A�x∗ = b� for all � = 1, · · · ,m, the first

summation term of hij above is zero at x∗. Let M(y) = y Hf (x∗)y be a quadratic
function of y. Then we have

M(y) = 4
m∑

�=1

(y A�x∗(x∗) A�y = 4
m∑

�=1

|y A�x∗|2

= 4
m∑

�=1

|y a�|2|ā � x∗|2 ≥ 4a0‖x∗‖2‖y‖2,

where the inequality follows from the fact that aj , j = 1, · · · ,m are a0-generic. It
implies that HF (x∗) is positive definite. ��

Next, we show that the Hessian HF (x∗) is nonnegative definite at the global
minimizer x� in the complex case. To this end, we first introduce some notations.
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Write a� = a� + ic� for � = 1, · · · ,m. For z = x+ iy, we have a � z∗ = b� for the
global minimizer z∗. Writing f�(x, y) = |a � z|2 − b� = (a � x − c � y)2 + (c � x +
a � y)2 − b�, we consider

f (x, y) = 1

m

m∑

�=1

f 2
� .

The gradient of f can be easily computed as follows: ∇f = [∇xf,∇yf ] with

∇xf (x, y) = 4

m

m∑

�=1

f�(x, y)[(a � x− c � y)a� + (c � x+ a � y)c�]

and

∇yf (x, y) = 4

m

m∑

�=1

f�(x, y)[(a � x− c � y)(−c�)+ (c � x+ a � y)a�].

Furthermore, the Hessian of F is given by

HF (x, y) =
[∇x∇xf (x, y) ∇x∇yf (x, y); ∇y∇xf (x, y)∇y∇yf (x, y)

]
,

where the terms ∇x∇xf (x, y), · · · ,∇y∇yf (x, y) are given below.

∇x∇xf (x, y) = 4

m

m∑

�=1

f�(x, y)[a�a � + c�c � ]

+ 8

m

m∑

�=1

[(a � x− c � y)a� + (c � x+ a � y)c�][(a � x− c � y)a � + (c � x+ a � y)c � ]

and

∇x∇yf (x, y) = 4

m

m∑

�=1

f�(x, y)[a�(−c�) + c�a � ]

+ 8

m

m∑

�=1

[(a � x− c � y)a� + (c � x+ a � y)c�][(a � x− c � y)(−c�) + (c � x+ a � y)a � ].

The terms ∇y∇xf (x, y) and ∇y∇yf (x, y) can be obtained similarly.

Theorem 10 For phase retrieval problem in the complex case, the Hessian matrix
Hf (x∗, y∗) at any global minimizer z∗ := (x∗, y∗) satisfies Hf (x∗, y∗) ≥ 0.
Furthermore, Hf (x∗, y∗) = 0 along the direction [−(y∗) , (x∗) ] .



DC Based Methods for Phase Retrieval 119

Proof At the global minimizer z∗ = x∗ + iy∗, we have

∇x∇xf (x∗, y∗) = 8

m

m∑

�=1

[(a � x∗ − c � y∗)a� + (c � x∗ + a � y∗)c�]×

[(a � x∗ − c � y∗)a � + (c � x∗ + a � y∗)c � ],

∇x∇yf (x∗, y∗) = 8

m

m∑

�=1

[(a � x∗ − c � y∗)a� + (c � x∗ + a � y∗)c�]×

[(a � x∗ − c � y∗)(−c�) + (c � x∗ + a � y∗)a � ]

and similar for the other two terms. It is easy to check that for any w = u+ iv with
u, v ∈ R

n, we have

[u v ] HF (x∗, y∗) [u ; v]

= 8

m

m∑

�=1

[(a � x∗ − c � y∗)a � u+ (c � x∗ + a � y∗)c � u]2

+ 8

m

m∑

�=1

[(a � x∗ − c � y∗)(−c�) v+ (c � x∗ + a � y∗)a � v]2

+ 8

m

m∑

�=1

2[(a � x∗ − c � y∗)a � u+ (c � x∗ + a � y∗)c � u]×

[(a � x∗ − c � y∗)(−c�) v+ (c � x∗ + a � y∗)a � v]
= 8

m

m∑

�=1

[(a � x∗ − c � y∗)a � u+ (c � x∗ + a � y∗)c � u+ (a � x∗ − c � y∗)(−c�) v

+(c � x∗ + a � y∗)a � v]2
≥ 0.

It means thatHf (x∗, y∗) ≥ 0. Furthermore, if we choose u = −y∗ and v = x∗, then
it is easy to show that

[−(y∗) (x∗) ] Hf (x∗, y∗)
[−y∗ ; x∗

] = 0,

which gives that the Hessian HF along this direction is zero. ��
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Modifications of Prony’s Method for the
Recovery and Sparse Approximation
with Generalized Exponential Sums

Ingeborg Keller and Gerlind Plonka

Abstract In this survey we describe some modifications of Prony’s method. In
particular, we consider the recovery of general expansions into eigenfunctions of
linear differential operators of first order. We show, how these expansions can be
reconstructed from function samples using generalized shift operators. We derive
an ESPRIT-like algorithm for the generalized recovery method and illustrate, how
the method can be simplified if some frequency parameters are known beforehand.
Furthermore, we present a modification of Prony’s method for sparse approximation
with exponential sums which leads to a non-linear least-squares problem.

Keywords Generalized Prony method · Generalized exponential sums · Shifted
Gaussians · Eigenfunctions of linear operators · Sparse signal approximation ·
Nonstationary signals

1 Introduction

The recovery and sparse approximation of structured functions is a fundamental
problem in many areas of signal processing and engineering. In particular, exponen-
tial sums and their generalizations play an important role in time series analysis and
in system theory [13, 15], in the theory of annihilating filters, and for the recovery
of signals with finite rate of innovation [3, 10, 26, 35, 37], as well as for linear
prediction methods [17, 34]. For system reduction, Prony’s method is related to
the problem of low-rank approximation of structured matrices (particularly Hankel
matrices) and corresponding nonlinear least-squares problems [18, 36]. There is a
close relation between Prony’s method and Padé approximation [4, 9]. Extended
models have also been studied in [16]. Exponential sums started to become more
important for sparse approximation of smooth functions, see [5, 6, 12, 23], and
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this question is closely related to approximation in Hardy spaces and the theory
of Adamjan, Arov and Krein, see [1, 2, 22].

1.1 The Classical Prony Method

A fundamental problem discussed in many papers is the recovery of exponential
sums of the form

f (x) :=
M∑

j=1

cj eαj x =
M∑

j=1

cj z
x
j , with zj := eαj , (1)

where the coefficients cj ∈ C \ {0} as well as the pairwise different frequency
parameters αj ∈ C or equivalently, zj ∈ C \ {0} are unknown. For simplicity we
assume that the number of terms M is given beforehand. One important question
appears: What information about f is needed in order to solve this recovery problem
uniquely?

The classical Prony method uses the equidistant samples f (0), f (1), . . . ,
f (2M − 1). Indeed, if we suppose that Imαj , j = 1, . . . ,M , lies in a predefined
interval of length 2π , as e.g. [−π, π), these 2M samples are sufficient. This can be
seen as follows.

We can view f (x) as the solution of a homogeneous linear difference equation
of order M with constant coefficients and try to identify these constant coefficients
in a first step. We define the characteristic polynomial (Prony polynomial) with the
help of its (yet unknown) zeros zj = eαj , j = 1, . . . ,M , and consider its monomial
representation,

p(z) :=
M∏

j=1

(z− eαj ) = zM +
M−1∑

k=0

pk z
k.

Then the coefficients pk , k = 0, . . . ,M − 1, and pM = 1 satisfy

M∑

k=0

pkf (k +m) =
M∑

k=0

pk

M∑

j=1

cj z
k+m
j =

M∑

j=1

cj z
m
j

M∑

k=0

pkz
k
j =

M∑

j=1

cj z
m
j p(zj ) = 0

for all m ∈ Z. Thus the coefficients pk of the linear difference equation can be
computed by solving the linear system

M−1∑

k=0

pk f (k +m) = −f (M +m), m = 0, . . . ,M − 1.
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Knowing p(z), we can simply compute its zeros zj = eαj , and in a further step the
coefficients cj , j = 1, . . . ,M , by solving the (overdetermined) system

f (�) =
M∑

j=1

cj z
�
j , � = 0, . . . , 2M − 1.

In practice there are different numerical algorithms available for this method, which
take care for the inherit numerical instability of this approach, see e.g. [14, 24, 27,
29, 31]. Note that for a given arbitrary vector (fk)

2M−1
k=0 , the interpolation problem

fk =
M∑

j=1

cj z
k
j , k = 0, . . . , 2M − 1,

may not be solvable, see e.g. [8]. The characteristic polynomial p(z) of the
homogeneous difference equation

∑M
k=0 pkfk+m = 0, m = 0, . . . ,M − 1, may

have zeros with multiplicity greater than 1, whereas the exponential sum in (1) is
only defined for pairwise different zeros. In this paper, we will exclude the case of
zeros with multiplicity greater than 1. However, the zeros eαj of the characteristic
polynomial p(z) resp. the parameters αj , j = 1, . . . ,M , may be arbitrarily close.
This may lead to highly ill-conditioned system matrices (f (k +m))M−1

k,m=0.

1.2 Content of This Paper

In this paper, we will particularly consider the following questions.

1. How can we generalize Prony’s method in order to recover other expansions
than (1)?

2. What kind of information is needed in order to recover the considered expansion?
3. How can we modify Prony’s method such that we are able to optimally

approximate a given (large) vector of function values in the Euclidean norm by a
sparse exponential sum?

To tackle the first question, we introduce the operator based general Prony
method in [33] and apply it to study expansions of the form

f (x) =
M∑

j=1

cj H(x) eαjG(x), x ∈ [a, b] ⊂ R, (2)

where cj , αj ∈ C, cj �= 0, αj pairwise different, G,H ∈ C∞(R) are predefined
functions, where G is strictly monotone on [a, b], and H is nonzero on [a, b].
This model covers many interesting examples as e.g. shifted Gaussians, generalized
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monomial sums and others. For the expansions (2) we will derive different sets
of samples which are sufficient for the recovery of all model parameters, thus
answering the second question.

In regard to question 3 we will focus on the case of f as in (1) and (2) and show
how the methods can be modified for optimal approximation, and how to treat the
case of noisy measurements.

The outline of the paper is as follows. First we will introduce the idea of the
operator based Prony method by looking at the recovery problem of the classical
exponential sum from different angles. In Sect. 3, we study the recovery of the
more general expansion f of the form (2). We will show that (2) can be viewed
as an expansion into eigenfunctions of a differential operator of first order and
thus, according to the generalized Prony method in [21], can be recovered using
higher order derivative values of f . We will show, how to find a new generalized
shift operator possessing the same eigenfunctions. This leads to a recovery method
that requires only function values of f instead of derivative values. The idea
will be further illustrated with several examples in Sect. 3.3. Section 4 is devoted
to the numerical treatment of the generalized recovery method. We will derive
an ESPRIT-like algorithm for the computation of all unknown parameters in the
expansion (2). This algorithm also applies if the number of terms M in the
expansion (2) is not given beforehand. Furthermore, we show in Sect. 4.3, how the
recovery problem can be simplified if some frequencies αj are known beforehand
(while the corresponding coefficients cj are unknown). Finally, in Sect. 5 we study
the optimal approximation with exponential sums in the Euclidean norm. This leads
to a nonlinear least squares problem which we tackle directly using a Levenberg-
Marquardt iteration. Our approach is essentially different from earlier algorithms,
as e.g. [7, 19, 20, 38].

2 Operator Based View to Prony’s Method

In order to tackle the questions 1 and 2 in Sect. 1.2, we start by reconsidering Prony’s
method. As an introductory example, we study the exponential sum in (1) from a
slightly different viewpoint. For h ∈ R \ {0} let Sh : C∞(R)→ C∞(R) be the shift
operator given by Shf := f (· + h). Then, for any α ∈ C, the function eαx is an
eigenfunction of Sh with corresponding eigenvalue eαh, i.e.,

(Sheα·)(x) = eα(x+h) = eαh eαx.

Therefore, the exponential sum in (1) can be seen as a sparse expansion into
eigenfunctions of the shift operator Sh. The eigenvalues eαj h are pairwise different,
if we assume that Imαj ∈ [−π/h, π/h). Now we consider the Prony polynomial
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p(z) :=
M∏

j=1

(z− eαj h) =
M∑

k=0

pk z
k

defined by the (unknown) eigenvalues eαj h corresponding to the active eigenfunc-
tions in the expansion f in (1). Then, for any predefined x0 ∈ R we have

M∑

k=0

pkf (x0 + h(k +m)) =
M∑

k=0

pk(S
k+m
h f )(x0) =

M∑

k=0

pk

M∑

j=1

cj (S
k+m
h eαj ·)(x0)

=
M∑

j=1

cj

M∑

k=0

pke
αj (hm+hk) eαj x0

=
M∑

j=1

cj e
αj hmp(eαj h)eαj x0 = 0, (3)

i.e., we can reconstruct p(z) by solving this homogeneous system for m =
0, . . . ,M − 1. We conclude that the exponential sum in (1) can be recovered from
the samples f (h� + x0), � = 0, . . . , 2M − 1. This is a slight generalization of the
original Prony method in Sect. 1.1 as we introduced an arbitrary sampling distance
h ∈ R \ {0} and a starting point x0 ∈ R.

Moreover, we can also replace the samples (Sk+mh f )(x0) = f (h(k + m) + x0)

in the above computation (3) by any other representation of the form F(Sk+mh f ),
where F : C∞(R)→ C is a linear functional satisfying F(eα·) �= 0 for all α ∈ C,
since

M∑

k=0

pkF (S
k+m
h f ) =

M∑

k=0

pk

M∑

j=1

cjF (S
k+m
h eαj ·) =

M∑

j=1

cj e
αj hmp(eαj h) F (eαj ·) = 0.

Any set of samples of the form F(S�hf ), � = 0, . . . , 2M − 1, is sufficient to recover
f in (1), and the above set is obtained using the point evaluation functional F =
Fx0 with Fx0f := f (x0) with x0 ∈ R. For further generalizations of the sampling
scheme we refer to [33].

This operator-based view leads us to the generalized Prony method introduced in
[21], which can be applied to recover any sparse expansion into eigenfunctions of a
linear operator.

To illustrate this idea further, let us consider now the differential operator D :
C∞(R)→ C∞(R) given by (Df )(x) := f ′(x) with f ′ denoting the first derivative
of f . Due to

(Deα·)(x) = α eαx
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we observe that exponentials eαx are eigenfunctions of D corresponding to the
eigenvalues α ∈ C. Thus, the sum of exponentials in (1) can also be seen as a sparse
expansion into eigenfunctions of the differential operator D. Similarly as before let
now

p̃(z) :=
M∏

j=1

(z− αj ) =
M∑

k=0

p̃k z
k

be the characteristic polynomial being defined by the eigenvalues αj corresponding
to the active eigenfunctions of D in (1), where again p̃M = 1 holds. Choosing the
functional Ff := f (x0) for some fixed x0 ∈ R, we find for any integer m ≥ 0

M∑

k=0

p̃kF (D
k+mf ) =

M∑

k=0

p̃kf
(k+m)(x0) =

M∑

k=0

p̃k

M∑

j=1

cjα
k+m
j eαj x0

=
M∑

j=1

cjα
m
j p̃(αj ) eαj x0 = 0.

Thus we can determine p̃k , k = 0, . . . ,M − 1, from
∑M
k=0 p̃kf

(k+m)(x0) = 0 for
m = 0, . . . ,M−1 and p̃M = 1, and recover the zeros αj of p̃ in a first step. The cj
are computed in a second step the same way as in the classical case. We conclude
that also the sample set f (�)(x0), � = 0, . . . , 2M − 1, for any fixed value x0 ∈ R,
is sufficient to recover f . Note that here we do not have any restrictions regarding
Imαj .

This example already shows, that there exist many different sample sets that may
be used to recover the exponential sum. In particular, each sample set of the form
F(A�h), � = 0, . . . , 2M−1, where A : C∞(R)→ C∞(R) is a linear operator with
eigenfunctions eαx corresponding to pairwise different eigenvalues α (covering the
range of αj in (1)), and where F is an arbitrary (fixed) linear functional satisfying
F (eα·) �= 0 for all α ∈ C, can be employed for recovery.

However, in practice it is usually much easier to provide function samples of the
form f (x0+h�) than higher order derivative values f �(x0) for � = 0, . . . , 2M − 1.
Therefore, for more general expansions, for example of the form (2), we will raise
the following question which has also been investigated in [33]: Suppose we already
found a set of samples which is (theoretically) sufficient to recover the expansion
at hand. Is it possible to find other sets of samples which can be more easily
acquired and also admit a unique recovery of the sparse expansion? In terms of
linear operators, we can reformulate this idea: Suppose that we have already found
an operator A, such that a considered expansion f is a sparse expansion into M
eigenfunctions of A (corresponding to pairwise different eigenvalues). Is it possible
to find another operator B that possesses the same eigenfunctions, such that the
samples F̃ (B�)f (with some suitable linear functional F̃ ) can be easier obtained
than F(A�)f for � = 0, . . . , 2M − 1?
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Back to our introductory example for the exponential sum (1). Let the linear
functional F be given as Ff := f (0). Assume that we have found the recovery
of (1) from the samples f (�)(0), � = 0, . . . , 2M − 1 first. This sampling set
corresponds to the linear differential operator A = D with Df = f ′. How can
we find the shift operator B = Sh, knowing just the fact, that (1) can be viewed as a
sparse expansion into eigenfunctions ofD? Is there a simple link between the linear
differential operator D and the shift operator Sh?

This is indeed the case. Taking ϕ ∈ C∞(R) with ϕ(x) = ehx , and applying ϕ
(formally) to D, we observe for each exponential eαx , α ∈ C,

ϕ(D)eα· = ehDeα· =
∞∑

�=0

h�

�! D
�eα· =

( ∞∑

�=0

h�

�! α
�

)
eα· = eαh eα· = Sheα·.

Therefore, we have ϕ(D)f = Shf for f in (1). We note that ϕ also maps the
eigenvalues of the differential operator onto the eigenvalues of the shift operator.
This idea to switch from differential operators to other more suitable operators will
be also applied to general sparse expansions in the next section.

3 Recovery of Generalized Exponential Sums

In this section we focus on the recovery of more general sparse expansions. Let
G : R → R be a given function in C∞(R), which is strictly monotone in a given
interval [a, b] ⊂ R, and let H : R → R be in C∞(R) and nonzero in [a, b]. We
consider expansions of the form

f (x) =
M∑

j=1

cj H(x) eαjG(x), x ∈ [a, b] ⊂ R, (4)

with cj ∈ C \ {0} and pairwise different αj ∈ C. Obviously, (1) is a special case
of (4) with G(x) = x and H(x) ≡ 1. In order to recover f , we need to identify the
parameters cj and αj , j = 1, . . . ,M .

3.1 Expansion into Eigenfunctions of a Linear Differential
Operator

According to our previous considerations in Sect. 2, we want to apply the so-called
generalized Prony method introduced in [21], where we view (4) as an expansion
into eigenfunctions of a linear operator.
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Step 1 First we need to find a linear operator A that possesses the functions
H(x)eαjG(x) as eigenfunctions for any αj ∈ C. For this purpose, let us define the
functions

g(x) := 1

G′(x)
, η(x) := −g(x)H

′(x)
H(x)

= − H ′(x)
G′(x)H(x)

, (5)

which are well defined on [a, b], since G′ and H have no zeros in [a, b]. Then the
differential operator A : C∞(R)→ C∞(R) with

Af (x) := g(x)f ′(x)+ η(x)f (x) (6)

satisfies

A
(
H(·)eαjG(·)

)
(x) = g(x) (αjG′(x)H(x)+H ′(x)

)
eαjG(x) + η(x)H(x) eαjG(x)

= αj H(x) eαjG(x), αj ∈ C,

i.e., the differential operator A indeed possesses the eigenfunctions H(x) eαjG(x)

with corresponding eigenvalues αj ∈ C.

Step 2 To reconstruct f in (4), we can apply a similar procedure as in Sect. 2. Let

p̃(z) :=
M∏

j=1

(z− αj ) =
M∑

k=0

p̃k z
k, p̃M = 1, (7)

be the characteristic polynomial defined by the (unknown) eigenvalues αj that
correspond to the active eigenfunctions of the operator A in the expansion (4). Let
F : C∞(R)→ C be the point evaluation functional Ff := f (x0) with x0 ∈ [a, b],
such that H(x0) �= 0 and G′(x0) �= 0. Then, for f as in (4) we observe that

M∑

k=0

p̃k F (A
m+kf ) =

M∑

k=0

p̃k

M∑

j=1

cj F
(
Ak+m

(
H(·) eαjG(·)

))

=
M∑

k=0

p̃k

M∑

j=1

cj α
k+m
j F

(
H(·) eαjG(·)

)

=
M∑

j=1

cj α
m
j

(
M∑

k=0

p̃k α
k
j

)(
H(x0) eαjG(x0)

)
= 0 (8)

for all integersm ≥ 0. Thus we can compute the coefficients p̃k , k = 0, . . . ,M − 1,
using the values F(A�f ), � = 0, . . . , 2M − 1. Having determined the polynomial
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p̃(z) in (7), we can compute its zeros αj , and afterwards solve a linear equation
system to reconstruct the complex coefficients cj in (4).

However, the question remains, how to obtain the needed data F(A�f ), � =
0, . . . , 2M − 1. We obtain

F(A0f ) = f (x0), (9)

F(A1f ) = g(x0)f
′(x0)+ η(x0)f (x0),

F (A2f ) = g(x0)
2f ′′(x0)+ [g(x0)g

′(x0)+ 2g(x0)η(x0)]f ′(x0)

+ [g(x0)η
′(x0)+ η(x0)

2]f (x0).

Since g and η (and their derivatives) are known beforehand, it is sufficient to provide
the first 2M derivative values of f at one point x0 ∈ [a, b] in order to reconstruct
f . Therefore we can conclude.

Theorem 1 Let G, H ∈ C∞([a, b]), such that G′ and H have no zeros on
[a, b], and let x0 ∈ [a, b] be fixed. Then f in (4) can be viewed as an expansion
into eigenfunctions of the differential operator A as in (6), and can be uniquely
reconstructed from the derivative samples f (�)(x0), � = 0, . . . , 2M − 1.

Proof As seen from the above computations, the operator A of the form (6) indeed
possesses the eigenfunctions H(x) eαjG(x). In order to reconstruct the parameters
αj , we first have to compute the required values F(A�f ) = (A�f )(x0), � =
0, . . . , 2M − 1. For this purpose, we need to determine the lower triangular matrix
L = (λm,�)2M−1

m,�=0 ∈ R
2M×2M such that

(
F(A�f )

)2M−1

�=0
=
(
(A�f )(x0)

)2M−1

�=0
= L

(
f (�)(x0)

)2M−1

�=0
.

As seen in (9), we have already λ0,0 := 1, λ1,0 := g(x0), λ1,1 := η(x0). Generally,
to obtain the entries of L, we have to consider the elements λm,� as functions in x,
starting with λ0,0(x) ≡ 1. By induction, it follows from

A�f (x) =
�∑

r=0

λ�,r (x) f
(r)(x)

that

A�+1f (x) =
�∑

r=0

g(x)
(
λ′�,r (x) f (r)(x)+ λ�,r (x)f (r+1)(x)

)
+ η(x) λ�,r (x) f (r)(x)

=
�∑

r=0

(
g(x) λ′�,r (x)+ η(x) λ�,r (x)

)
f (r)(x)+ g(x) λ�,r (x)f (r+1)(x).
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We conclude the recursion

λ�+1,r (x) :=

⎧
⎪⎨

⎪⎩

g(x) λ′�,r (x)+ η(x) λ�,r (x) r = 0,
g(x) (λ′�,r (x)+ λ�,r−1(x))+ η(x) λ�,r (x) r = 1, . . . , �,
g(x) λ�,r−1(x) r = �+ 1.

The matrix entries λ�,k := λ�,k(x0) are well-defined by assumption on H and G. In
a second step, we solve the homogeneous equation system (8),

M∑

k=0

p̃k F (A
k+mf ) = 0, m = 0, . . . ,M − 1.

Then we can determine the characteristic polynomial p̃ in (7) and extract its zeros
αj . Finally, the coefficients cj can be computed from the linear system

F(A�f ) = (A�f )(x0) =
M∑

j=1

cj (A
�(H(·) eαjG(·)))(x0) = H(x0)

M∑

j=1

cjα
�
j e
αjG(x0)

for � = 0, . . . , 2M − 1. ��
However, the values f (r)(x0), r = 0, . . . , 2M−1, may not be easily accessible, and
we need some extra effort to compute F(A�f ) from the derivatives of f .

3.2 Expansion into Eigenfunctions of a Generalized Shift
Operator

Our goal is to find a different set of sample values for the recovery of f in (4), which
is easier to obtain but also sufficient for a unique reconstruction. Thus we need
to find an operator B which has the same eigenfunctions as A in (6). In addition,
we require that F(B�f ) (with some point evaluation functions F ) can be easily
obtained from function values of f . Similarly as in Sect. 2, we consider the linear
operator B = ϕ(A) = exp(hA) with A in (6) and h ∈ R \ {0}. We observe for f
in (4),

exp(hA)f =
∞∑

�=0

h�

�! A
�f =

∞∑

�=0

h�

�!
M∑

j=1

cj A
�
(
H(·)eαjG(·)

)

=
∞∑

�=0

h�

�!
M∑

j=1

cjα
�
j

(
H(·) eαjG(·)

)
=

M∑

j=1

cj

( ∞∑

�=0

h�

�! α
�
j

)(
H(·) eαjG(·)

)
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=
M∑

j=1

cj eαj h
(
H(·) eαjG(·)

)
= H(·)

M∑

j=1

cj eαj (h+G(·))

= H(·)
M∑

j=1

cj eαjG(G
−1(h+G(·)))

= H(·)
H(G−1(h+G(·)))

M∑

j=1

cjH(G
−1(h+G(·))) eαjG(G

−1(h+G(·)))

= H(·)
H(G−1(h+G(·))) f

(
G−1(h+G(·))

)
.

Therefore, we define the generalized shift operator

SH,G,hf (x) := H(x)

H(G−1(h+G(x)))f
(
G−1(h+G(x))

)
, (10)

which depends on the functions H, G, and the step size h ∈ R \ {0}. This shift
operator has also been introduced in [25] and satisfies the properties

SH,G,h2

(
SH,G,h1f

) = SH,G,h1

(
SH,G,h2f

) = SH,G,h1+h2f

for all h1, h2 ∈ R, and

SkH,G,hf = SH,G,khf (11)

for k ∈ Z, see Theorem 2.1 in [25]. Observe that the generalized shift operator
in (10) is already well defined for continuous functions H, G, and we don’t need
to assume that G and H are in C∞(R). We only need to ensure that G−1 and 1/H
are well defined within the considered sampling interval. We summarize this in the
following theorem.

Theorem 2 Let G, H be continuous functions on an interval [a, b], such that G is
strictly monotone in [a, b] and H has no zeros in [a, b]. Assume that the pairwise
different parameters αj in the expansion

f (x) =
M∑

j=1

cj H(x) eαjG(x), x ∈ [a, b] ⊂ R, (12)

satisfy Imαj ∈ (−T , T ] and that cj ∈ C\{0}. Then f can be uniquely reconstructed
from the sample values f (G−1(h�+G(x0)+h�)), � = 0, . . . , 2M−1, where x0, h
are taken such that 0 < |h| < π

T
and G(x0 + h�) ∈ [G(a),G(b)] for G(a) < G(b)

or G(x0)+ h� ∈ [G(b),G(a)] for G(a) > G(b).
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Proof From the arguments above, we can conclude that H(x) eαjG(x) is an
eigenfunction of the generalized shift operator SH,G,h in (10) associated with the
eigenvalue eαj h, since

SH,G,h(H(·)eαjG(·))= H(·)
H(G−1(h+G(·)))

(
H(G−1(h+G(·)))eαjG(G−1(h+G(·))))

= H(·) eαj (h+G(·)) = eαj h H(·) eαjG(·).

Further, for Imαj ∈ (−T , T ], and 0 < |h| < π
T

, the eigenvalues eαj h corresponding
to active eigenfunctions in (4) are pairwise different, such that we can uniquely
derive the active eigenfunctions H(x)eαjG(x) in (12) from the corresponding active
eigenvalues. We define the Prony polynomial

p(z) :=
M∏

j=1

(z− eαj h) =
M∑

k=0

pk z
k with pM = 1, (13)

using the (unknown) eigenvalues eαj h, where pk , k = 0, . . . ,M − 1, are the
(unknown) coefficients of the monomial representation of p(z). Then, we conclude

M∑

k=0

pk (S
k+m
H,G,hf )(x0) =

M∑

k=0

pk

M∑

j=1

cj (S
k+m
H,G,hH(·) eαjG(·))(x0)

=
M∑

k=0

pk

M∑

j=1

cj eαj h(k+m)H(x0) eαjG(x0)

= H(x0)

M∑

j=1

cj eαj hm eαjG(x0)
M∑

k=0

pk (e
αj h)k

= H(x0)

M∑

j=1

cj eαj hm eαjG(x0) p(eαj h) = 0 (14)

for all integers m, where by definition

(Sk+mH,G,hf )(x0) = H(x0)

H(G−1(h(k +m)+G(x0)))
f (G−1(h(k +m)+G(x0))).

Thus, we can compute the coefficients pk , k = 0, . . . ,M−1, from the homogeneous
linear system
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M∑

k=0

pk (S
k+m
H,G,hf )(x0) = H(x0)

M∑

k=0

pk
f (G−1(h(k +m)+G(x0)))

H(G−1(h(k +m)+G(x0)))
= 0,

(15)
for m = 0, . . . ,M − 1, and pM = 1, or equivalently from

M−1∑

k=0

pk
f (G−1(h(k +m)+G(x0)))

H(G−1(h(k +m)+G(x0)))
= − f (G

−1(h(M +m)+G(x0)))

H(G−1(h(M +m)+G(x0)))
,

(16)
for m = 0, . . . ,M − 1. The conditions on h and x0 in the theorem ensure that
we only use samples of f in [a, b]. The equation system (16) is always uniquely
solvable, since the coefficient matrix is invertible. This can be deduced as follows.
For f in (12),

(
f (G−1(h(k +m)+G(x0)))

H(G−1(h(k +m)+G(x0)))

)M−1

m,k=0
=
⎛

⎝
M∑

j=1

cj eαj (h(k+m)+G(x0)))

⎞

⎠
M−1

m,k=0

=
(

eαj hm
)M−1,M

m=0,j=1
diag

(
c1eα1G(x0), . . . , cMeαMG(x0)

) (
eαj hk

)M,M−1

j=1,m=0
. (17)

The first and the last matrix factor are invertible Vandermonde matrices with
pairwise different nodes eαj h, and the diagonal matrix is invertible, since cj �= 0.

Having solved (16), we can reconstruct p(z) and extract all its zeros zj = eαj h.
In a second step we can compute the coefficients cj from the overdetermined system

f (G−1(h�+G(x0)) =
M∑

j=1

cj H(G
−1(h�+G(x0))) eαj (h�+G(x0)), (18)

for � = 0, . . . , 2M − 1. ��

3.3 Application to Special Expansions

The model (4) covers many special expansions, and we want to illustrate some of
them.

3.3.1 Classical Exponential Sums

Obviously, the model (1) is a special case of (4) with G(x) := x and H(x) := 1. In
this case, we have
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g(x) ≡ 1, η(x) ≡ 0

in (5) such that A in (6) reduces to Af = f ′. The generalized shift operator in (10)
with G−1(x) = x is of the form S1,x,hf (x) = f (h + x) and is therefore just
the usual shift operator Sh in Sect. 2. By Theorem 1, the sample values f (�)(x0),
� = 0, . . . , 2M − 1 are sufficient for recovery of f , where in this case the interval
[a, b] can be chosen arbitrarily in R and thus also x0. Theorem 2 provides the set of
sample values f (x0 + h�) similarly as we had seen already in Sect. 2.

3.3.2 Expansions into Shifted Gaussians

We want to reconstruct expansions of the form

f (x) =
M∑

j=1

cj e−β(x−αj )2 , (19)

where β ∈ R \ {0} is known beforehand, and we need to find cj ∈ C \ {0} and
pairwise different αj ∈ C, see also [25, 37].

First, we observe that the functions

e−β(x−αj )2 = e−βα
2
j e−βx2

e2βαj x,

are of the form H(x) eαjG(x), with

H(x) := e−βα
2
j e−βx2

, G(x) := 2βx.

Using the results in Sects. 3.1 and 3.2, (5) yields

g(x) = 1

G′(x)
= 1

2β
, η(x) = −g(x)H

′(x)
H(x)

= − 1

2β
(−2βx) = x.

Therefore, the operator A defined in (6) simplifies to Af (x) := 1
2β f

′(x) + x f (x)
and

A
(

e−β(·−αj )2
)
(x) =

(
1

2β
(−2β(x − αj ))+ x

)
e−β(x−αj )2 = αj e−β(x−αj )2 .

Thus, we can reconstruct f in (19) according to Theorem 1 from the derivative
samples f (�)(x0), � = 0, . . . , 2M−1. Here, x0 can be chosen arbitrarily in R, since
G′(x) = 2β �= 0 and H(x) �= 0 for all x ∈ R, which means that the interval [a, b]
can be chosen arbitrarily in Theorem 1.

Another sampling set is obtained by Theorem 2. The generalized shift operator
SH,G,h in (10) reduces to
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SH,G,hf (x) = e−βx2

e−β((h+2βx)/2β)2
f

(
h+ 2βx

2β

)
= eh(x+h/4β) f

(
x + h

2β

)
.

(20)
Then

SH,G,h(e
−β(·−αj )2)(x) = eh(x+h/4β) e−β(x+

h
2β−αj )2

= ehαj e−β(x−αj )2 .

Therefore, the expansion in (19) is an expansion into eigenfunctions of the
generalized shift operator in (20) and can be reconstructed from the equidistant
samples

f

(
x0 + h�

2β

)
, � = 0, . . . , 2M − 1,

where x0 ∈ R can be chosen arbitrarily and 0 < |h| < π
T

, where T is the a priori
known bound satisfying |αj | < T for all j = 1, . . . ,M . Since the interval [a, b]
occurring in Theorem 2 can be taken arbitrarily large, we can always take it such
that

|G(b)−G(a)|
2M

= 2|β|(b − a)
2M

>
π

T
,

and therefore, there is no further condition on the choice of h. We note that the
procedure also applies for β ∈ C \ {0}. In this case we can use the substitution
α̃j = αj2β and take G(x) = x.

Remark 1 In particular, the model (19) includes expansions into modulated shifted
Gaussians

f (x) =
M∑

j=1

cj e2π ixκj e−β(x−sj )2

with κj ∈ [0, 1) and sj ∈ R which have been considered in [25]. Since

e2π ixκj e−β(x−sj )2 = e−βs
2
j e−βx2

e−x(2βsj+2π iκj ),

we choose αj := 2βsj + 2π iκj , j = 1, . . . ,M . Then the reconstruction of the αj
is sufficient to find the parameters sj and κj from the real and the imaginary part of
αj , respectively.

Example 1 We illustrate the recovery of expansions into shifted Gaussians and
consider f of the form (19) with M = 10 and β = i. The original parameters in
Table 1 have been obtained by applying a uniform random choice from the intervals
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Table 1 Parameters cj and αj for f (x) in (19) withM = 10, see Fig. 1

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

Re cj −1.754 −1.193 0.174 −1.617 2.066 −1.831 −1.644 −1.976 −1.634 −0.386

Im cj −0.756 1.694 −0.279 −1.261 1.620 1.919 −0.245 −1.556 −0.968 −0.365

αj 0.380 −0.951 0.411 0.845 −1.113 −1.530 −0.813 −0.725 −0.303 −0.031

-15

-10

-5

0

5

10

15
real part

-2 0 2 4 6 8 10 12 14 16 18

-2 0 2 4 6 8 10 12 14 16 18
-15

-10

-5

0

5

10

15
imaginary part

Fig. 1 Real and imaginary part of the signal f (x) consisting of shifted Gaussians as given in
Example 1. The black dots indicate the used signal values. Here the reconstructed signal is shown
in red and cannot be distinguished from the original signal f (x)

(−3, 3) + i(−2, 2) for cj and from (−2, 2) for αj . Since β is complex, we use
G(x) = x and the substitution α̃j = 2iαj . Further, we choose x0 = −1 and h = 1.

Figure 1 represents the outcome of such reconstruction. The numerical treatment
of the generalized Prony method is studied in more detail in Sect. 4. For the
computation of this example we have used Algorithm 1 (see Sect. 4.1) with the
minimal number of 20 samples f (k), k = −1, . . . , 18. The samples are represented
as black dots in Fig. 1. The obtained maximal reconstruction error for the parameters
αj parameters cj are

errα = 1.518622755454592 · 10−11, errc = 5.286537816367291 · 10−10.

3.3.3 Expansions into Functions of the Form exp(αj sin x)

We want to reconstruct expansions of the form
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f (x) =
M∑

j=1

cj eαj sin x, (21)

where we need to find cj ∈ C \ {0} and pairwise different αj ∈ C. Here, eαj sin x

is of the form H(x) eαjG(x) with H(x) := 1 and G(x) := sin(x). To ensure that
G(x) is strictly monotone, we choose the interval [−π2 + δ, π2 − δ] with some small
δ > 0. With g(x) = (G′(x))−1 = (cos(x))−1 and η(x) = 0 the operator A defined
in (6) simplifies to Af (x) = (cos(x))−1f ′(x) and

A(eαj sin(·))(x) = 1

cos(x)
(αj cos(x) eαj sin(x)) = αj eαj sin(x).

According to Theorem 1 we can therefore reconstruct f in (21) from the derivative
samples f (�)(x0) for some x0 ∈ [−π2 + δ, π2 − δ].

Using Theorem 2, we define withH(x) := 1 andG(x) := sin(x) the generalized
shift operator

SH,G,hf (x) = f (G−1(h+G(x)) = f (arcsin(h+ sin(x))).

We have to choose x0 and h such that all samples f (arcsin(h� + sin(x0))) that we
require for the reconstruction are well-defined, i.e., sin(x0)+h� ∈ [−π2 + δ, π2 − δ]
for � = 0, . . . , 2M − 1. This is for example ensured for x0 = −π2 + h

2 and 0 < h ≤
π

2M+1 .

Example 2 We illustrate the reconstruction of a function f (x) of the form (21) with
M = 10 and with real parameters cj and αj in Table 2 that have been obtained
by applying a uniform random choice from the intervals (−3, 3) for cj and from
(−π, π) for αj . We choose a sampling distance h = 1

17 and a starting point x0 =
−π2 + h2 = −π2 + 1

34 . The reconstruction is performed using Algorithm 1 in Sect. 4.1.
The reconstruction problem is very ill-posed in this setting, since the measure-

ments all have to be taken from a small interval, see Fig. 2. The possible sampling
distance strongly depends on the length of the interval, where G(x) is strictly
monotone, as well as on the slope of G−1(x). Therefore, we cannot reconstruct the
exact parameters with high precision, however, the reconstructed function is still a
very good approximation of f , see Fig. 2.

Table 2 Parameters cj and αj for f (x) in (21) withM = 10, see Fig. 2

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

cj 2.104 0.363 2.578 1.180 0.497 1.892 2.274 2.933 −2.997 2.192

αj 1.499 0.540 −1.591 1.046 −2.619 0.791 1.011 1.444 2.455 3.030
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Fig. 2 Signal f (x) in (21) consisting of M = 10 terms according to Table 2. The black dots
indicate the used signal values and the reconstructed signal is shown in red

4 Numerical Treatment of the Generalized Prony Method

In this section, we consider some numerical procedures to recover the parameters
αj , cj , j = 1, . . . ,M , in (4) resp. (12).

4.1 The Simple Prony Algorithm

First we summarize the direct algorithm for the recovery of f in (12) from the
function values f (G−1(h� + G(x0))), � = 0, . . . , 2M − 1, according to the proof
of Theorem 2.

Algorithm 1
Input:M ∈ N, h > 0, sampled values f (G−1(h�+G(x0))), � = 0, . . . , 2M−1.

1. Solve the linear system (16) to find the vector p = (p0, . . . , pM−1)
T .

2. Compute all zeros zj ∈ C, j = 1, . . . ,M , of p(z) =
M−1∑
k=0

pk z
k + zM .

3. Extract the coefficients αj := 1
h

log zj from zj = eαj h, j = 1, . . . .M .
4. Solve the system (18) to compute c1, . . . , cM ∈ C.

Output: αj ∈ R+ i[−π
h
, π
h
), cj ∈ C, j = 1, . . . ,M .

The assumptions of Theorem 2 imply that the coefficient matrix of the linear
system (16) is the invertible Hankel matrix,
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HM :=
(
f (G−1(h(k +m)+G(x0)))

H(G−1(h(k +m)+G(x0)))

)M−1

k,m=0
.

However, the factorization (17) indicates that HM may have very high condition
number that particularly depends on the condition number of the Vandermonde

matrix
(
eαj hm

)M−1,M
m=0,j=1.

4.2 ESPRIT for the Generalized Prony Method

We are interested in a more stable implementation of the recovery method and
present a modification of the ESPRIT method, see [24, 28, 29, 31] for the classical
exponential sum. We assume that the number of terms M in (4) is not given
beforehand, but L is a known upper bound of M . In the following, we use the
notation AK,N for a rectangular matrix in C

K×N and AK for a square matrix in
C
K×K , i.e., the subscripts indicate the matrix dimension.
Let

f� := f (G−1(h�+G(x0)))

H(G−1(h�+G(x0)))
, � = 0, . . . , 2N − 1, (22)

be given and well defined, where N ≥ L ≥ M . We consider first the rectangular
Hankel matrix

H2N−L,L+1 := (f�+m)2N−L−1,L
�,m=0 ∈ C

(2N−L)×(L+1).

For exact data, (14) implies that rank H2N−L,L+1 = M . We therefore compute the
singular value decomposition of H2N−L,L+1,

H2N−L,L+1 = U2N−L D2N−L,L+1 WL+1, (23)

with unitary square matrices U2N−L, WL+1 and a rectangular diagonal matrix
D2N−L,L+1 containing the singular values of H2N−L,L+1. We determine the
numerical rank M of H2N−L,L+1 by inspecting its singular values σ̃ 1 ≥ σ̃ 2 ≥
. . . ≥ σ̃ L+1 ≥ 0. We find M as the number of singular values being larger than a
predefined bound ε. Usually, we can find a clear gap between σ̃M and the further
singular values σ̃M+1, . . . , σ̃ L+1, which are close to zero. We redefine the Hankel
matrix and consider H2N−M,M+1 := (f�+m)2N−M−1,M

�,m=0 ∈ C
(2N−M)×(M+1) with the

corresponding SVD

H2N−M,M+1 = U2N−M D2N−M,M+1 WM+1, (24)
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with unitary matrices U2N−M and WM+1. For exact data, H2N−M,M+1 has rankM ,
and DT2N−M,M+1 = (diag(σ 1, . . . , σM, 0), 0) ∈ R

(M+1)×(2N−M) with σ 1 ≥ σ 2 ≥
. . . ≥ σM > 0.

We introduce the sub-matrices H2N−M,M(0) and H2N−M,M(1) given by

H2N−M,M+1=
(

H2N−M,M(0), (f�+M)2N−M−1
�=0

)
=
(
(f�)

2N−M−1
�=0 ,H2N−M,M(1)

)
,

i.e., we obtain H2N−M,M(0) be removing the last column of H2N−M,M+1 and
H2N−M,M(1) by removing the first column of H2N−M,M+1. Recalling (16) we have
for exact data

H2N−M,M(0)p = − (f�+M)2N−M−1
�=0 , (25)

where p = (p0, . . . , pM−1)
T contains the coefficients of the Prony polynomial

in (13). Let now

CM(p) :=

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −p0

1 0 . . . 0 −p1

0 1 . . . 0 −p2
...
...

...
...

0 0 . . . 1 −pM−1

⎞

⎟⎟⎟⎟⎟⎠
∈ C

M×M

be the (unknown) companion matrix of p having the M zeros of p(z) in (13) as
eigenvalues. By (25) it follows that

H2N−M,M(0)CM(p) = H2N−M,M(1). (26)

This observation leads to the following algorithm. According to (24) we find the
factorizations

H2N−M,M(0) = U2N−M D2N−M,M+1 WM+1,M(0),

H2N−M,M(1) = U2N−M D2N−M,M+1 WM+1,M(1),

where WM+1,M(0) is obtained by removing the last column of WM+1 and
WM+1,M(1) by removing its first column. Now, (26) implies

D2N−M,M+1WM+1,M(0)CM(p) = D2N−M,M+1WM+1,M(1).

Multiplication with the generalized inverse

D†
2N−M,M+1 =

(
diag (

1

σ 1
, . . .

1

σM
, 0), 0

)
∈ R

(M+1)×(2N−M),
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finally yields

WM(0)CM(p) = WM(1),

where the square matrices WM(0) and WM(1) are obtained from WM+1,M(0) and
WM+1,M(1), respectively, by removing the last row. Thus, the eigenvalues of CM(p)
are equal to the eigenvalues of

WM(0)
−1 WM(1),

where WM(0) is invertible since CM(p) is invertible. (We can assume here that
zj �= 0 since zj = eαj .) We therefore obtain the following new algorithm.

Algorithm 2 (ESPRIT for the generalized Prony method)
Input: L,N ∈ N, L ≤ N , L upper bound for the number M of terms in (12),
sample values f�, � = 0, . . . , 2N − 1 as given in (22), G(x0).

1. Compute the SVD of the rectangular Hankel matrix H2N−L,L+1 as in (23).
Determine the numerical rank M of H2N−L,L+1, and compute the SVD of
H2N−M,M+1 = U2N−M D2N−M,M+1 WM+1.

2. Build the restricted matrix WM(0) by removing the last column and the last row
of WM+1 and WM(1) by removing the first column and the last row of WM+1.
Compute the eigenvalues zj , j = 0, . . . ,M , of WM(0)−1WM(1).

3. Extract the coefficients αj := 1
h

log zj from zj = eαj h, j = 1, . . . ,M .
4. Solve the overdetermined system

f� =
M∑

j=1

cj z
G(x0)/h
j z�j , � = 0, . . . , 2N − 1,

to compute c1, . . . , cM ∈ C.

Output:M , αj ∈ R+ i[−π
h
, π
h
), cj ∈ C, j = 1, . . . ,M .

Example 3 We compare the performance of the classical Prony method in Algo-
rithm 1 with the ESPRIT method in Algorithm 2 and focus on the reconstruction
of the frequency parameters for f of the form (21). In our numerical example we
choose M = 5, x0 = −π2 + 1

34 , h = 1
17 and the parameter vectors α = (αj )Mj=1,

c = (cj )Mj=1 as

α = (π
2
,

iπ

4
, 0.4+ i,−0.5,−1)T and c = (0.5, 2,−3, 0.4i,−0.2)T .

For Algorithm 1 we have only used the first N = 10 samples. For the ESPRIT
Algorithm 2 we have used N = 15, i.e., 30 sample values, and have fixed an upper
bound L = 10. For the rank approximation we have applied a bound ε = 10−8. For
comparison we also tested Algorithm 2 with an upper bound of L = 13. In Table 3,
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Table 3 Reconstructed parameters αj in Example 3 provided by Algorithms 1 and 2

j Exact αj αj (Algorithm 1) αj (Algorithm 2, L = 10) αj (Algorithm 2, L = 13)

j = 1 π
2 1.57121+ 6.0886 · 10−5i 1.57079− 2.3198 · 10−8i 1.57079− 2.5066i · 10−8

j = 2 iπ
4 0.00231+ 0.7928i 2.00492 · 10−6 + 0.7854i 2.00522 · 10−6 + 0.7854i

j = 3 0.4+ i 0.40168+ 0.9982i 0.4000+ 1i 0.4000+ 1i

j = 4 −0.5 −0.49944− 0.0013i −0.5− 4.3008 · 10−7i −0.5− 4.5298 · 10−7i

j = 5 −1 −1.00019− 0.0042i −1.0− 1.1763−6i −1.0− 1.16642 · 10−6i

we present the results of parameter reconstruction using Algorithms 1 and 2. The
reconstruction of the frequency values using Algorithm 2 is in the case for L = 10
as well as in the case L = 13 much more accurate than the reconstruction using
Algorithm 1. For both upper bounds L the reconstruction error is of the same order.
Lemma 3.1 in [30] suggests that a sufficiently large choice of L ≈ N is a good
choice.

Remark 2 The Hankel matrices occurring in the considered reconstruction prob-
lems can have a very high condition number. However, there are stable algorithms
available to compute the SVD for such Hankel matrices, particularly for the square
case, see e.g. [11].

4.3 Simplification in Case of Partially Known Frequency
Parameters

In some applications, one or more of the parameters αj , or equivalently zj =
eαj h in the expansion (12), may be already known beforehand. However, if the
corresponding coefficients cj are unknown, we cannot just eliminate the term
cj H(x) eαjG(x) from the sum in (12) to get new measurements of the simplified
sum from the original measurements. However, we can use the following approach.
Recall that the vector p = (p0, . . . , pM)

T of coefficients of the Prony polynomial

p(z) =
M∑

k=0

pkz
k =

M∏

j=1

(z− zj )

satisfies by (15) and (16)

H2N−M,M+1 p = 0,

where the Hankel matrix H2N−M,M+1 is constructed from f� in (22) as in the
previous section. Assume that z1 is already known beforehand, and let
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q(z) :=
M∏

j=2

(z− zj ) =
M−1∑

k=0

qkz
k,

with the coefficient vector q := (q0, . . . , qM−1)
T . Then p(z) = (z−z1)q(z) implies

for the coefficient vectors

p =

⎛

⎜⎜⎜⎝

0
q0
...

qM−1

⎞

⎟⎟⎟⎠− z1

⎛

⎜⎜⎜⎝

q0
...

qM−1

0

⎞

⎟⎟⎟⎠

and thus

H2N−M,M+1p = (H2N−M,M(1)− z1H2N−M,M(0)
)

q = 0,

with H2N−M,M(0) and H2N−M,M(1) denoting the submatrices of H2N−M,M+1,
where either the last column or the first column is removed. Therefore, we easily
find the new Hankel matrix

H̃2N−M,M = H2N−M,M(1)− z1H2N−M,M(0)

for the reduced problem. Observe from (22), that the new components of the matrix
H2N−M,M(1)− z1H2N−M,M(0) are of the form

f̃� = f�+1 − z1f� =
M∑

j=1

cj e
αj (h(�+1)+G(x0)) − eα1h

M∑

j=1

cj e
αj (h�+G(x0))

=
M∑

j=2

cj (e
αj h − eα1h)eαj (h�+G(x0)),

i.e., the coefficients cj , j = 2, . . . ,M , are changed to c̃j = cj (eαj h − eα1h).

Thus, we can use the samples f̃� to recover the shorter sum
M∑
j=2
c̃j eαjG(x). Once

we have computed the remaining αj , j = 2, . . . ,M we obtain the coefficients cj ,
j = 1, . . . ,M , by solving the linear system (18).
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5 Modified Prony Method for Sparse Approximation

In this section, we want to consider the question, how to approximate a given data
vector y = (yk)Nk=0 ∈ C

N+1 withN ≥ 2M−1 by a new vector f = (fk)Nk=0 ∈ C
N+1

whose elements are structured as

fk =
M∑

j=1

cj z
k
j ,

i.e., f only depends on the parameter vectors c = (cj )
M
j=1 and z = (zj )

M
j=1. In

this setting, the length N of the data vector y is usually much larger than M , i.e.,
N * M , while M is assumed to be small, say M < 30. We assume that for the
given data y the corresponding Hankel matrix H := (yk+m)N−M−1,M−1

k=0,m=0 has full
rank, i.e., that the given data cannot be exactly represented by an exponential sum
with less than M terms, as it can be also seen from the factorization (17). Further,
we assume that cj ∈ C \ {0} and that zj ∈ C \ {0} are pairwise distinct.

5.1 The Nonlinear Least-Squares Problem

We want to solve the minimization problem

argmin
c,z∈CM

∥∥∥∥∥∥∥
y−

⎛

⎝
M∑

j=1

cj z
k
j

⎞

⎠
N

k=0

∥∥∥∥∥∥∥
2

. (27)

This problem occurs in two different scenarios. The first one is the problem of
parameter estimation in case of noisy data. Assume that we have noisy samples
yk = f (k) + εk , k = 0, . . . , N , of f (x) = ∑M

j=1 cj z
x
j , where εk are i.i.d.

random variables with εk ∈ N(0, σ 2). In the second scenario we consider the sparse
nonlinear approximation problem to find a function f (x) = ∑M

j=1 cj z
x
j , which

minimizes
∑N
�=0 |y� − f (�)|2. With the Vandermonde matrix

Vz :=

⎛

⎜⎜⎜⎜⎜⎝

1 1 . . . 1
z1 z2 . . . zM

z2
1 z

2
2 . . . z

2
M

...
...

...

zN1 z
N
2 . . . z

N
M

⎞

⎟⎟⎟⎟⎟⎠
∈ C

(N+1)×M

we have f = Vz c, and the problem (27) can be reformulated as
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argmin
c,z∈CM

‖y− Vzc‖2.

For given z, the linear least squares problem argmin
c∈CM

‖y − Vzc‖2 can be directly

solved, and we obtain c = V+z y = [V∗zVz]−1V∗zy, since Vz has full rank M .
Thus (27) can be simplified to

argmin
z∈CM

‖y− VzV+z y‖2
2 = argmin

z∈CM
‖(I− Pz)y‖2

2

= argmin
z∈CM

(y∗y− y∗Pzy) = argmax
z∈CM

y∗Pzy,

where Pz := VzV+z is the projection matrix satisfying Pz = P∗z = P2
z , PzVz = Vz

as well as V+z Pz = V+z . Hence, similarly as for Prony’s method, we can concentrate
on finding the parameters zj in z first.

Let now r(z) := Pzy ∈ C
N+1. Then the optimization problem is equivalent to

argmax
z∈CM

‖r(z)‖2
2 = argmax

z∈CM
‖Pzy‖2

2. (28)

To derive an iterative algorithm for solving (28), we first determine the Jacobian Jz
of r(z) = (r�(z))N�=0.

Theorem 3 The Jacobian matrix Jz ∈ C
(N+1)×M of r(z) in (28) is given by

Jz :=
(
∂r�(z)
∂zj

)N,M

�=0,j=1

= (IN+1 − Pz)V′z diag(V+z y)+ (V+z )∗ diag
(
(V′z)∗(IN+1 − Pz)y

)
, (29)

where IN+1 denotes the identity matrix of size N + 1,

V′z :=

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0
1 1 . . . 1

2z1 2z2 . . . 2zM
...

...
...

NzN−1
1 NzN−1

2 . . . NzN−1
M

⎞

⎟⎟⎟⎟⎟⎠
∈ C

(N+1)×M,

and diag(q) denotes the diagonal matrix of size M ×M for a vector q ∈ C
M . In

particular,

∇‖r(z)‖2
2 = 2J∗z r(z) = diag((V′z)T (IN+1 − Pz)y)V+z y. (30)

Proof First, observe that ∂
∂zj

Vz is a rank-1 matrix of the form
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∂

∂zj
Vz = z′j e∗j ∈ C

(N+1)×M, j = 1, . . . ,M,

where z′j = (0, 1, 2zj , 3z2
j , . . . , Nz

N−1
j )T and ej is the j th unit vector of lengthM .

Then we obtain

∂

∂zj
r(z) = ∂

∂zj
(Pzy) = ∂

∂zj

(
Vz[V∗zVz]−1V∗zy

)

= (z′j e∗j )V+z y− (V+z )∗
[
(z′j e∗j )∗Vz + V∗z(z′j e∗j )

]
V+z y+ (V+z )∗(z′j e∗j )∗y

= (V+z y)j z′j − ((z′j )∗Pzy)(V+z )∗ej − (V+z y)jPzz′j + ((z′j )∗y)(V+z )∗ej
= (V+z y)j (IN+1 − Pz)z′j + ((z′j )∗(IN+1 − Pz)y)(V+z )∗ej

= (V+z y)j (IN+1 − Pz)V′zej + ((z′j )∗(IN+1 − Pz)y)(V+z )∗ej ,

where (V+z y)j denotes the j th component of V+z y. From this observation, we
immediately find Jz in (29). Further, this formula implies

J∗zr(z)=
(
diagV+z y

)
(V′z)∗(IN+1−Pz)Pzy+

(
diag((V′z)∗(IN+1−Pz)y)

)∗
V+z Pzy

= diag
(
(V′z)T (IN+1 − Pz)y

)
V+z y.

��
Corollary 1 Let y ∈ C

N+1 be given and assume that (yk+m)N−M+1,M−1
k=0,m=0 has full

rankM . Then, a vector z ∈ C
M solving (28) necessarily satisfies

(V′z)∗(IN+1 − Pz)y = 0.

Proof If z solves (28), then ∇‖r(z)‖2
2 = 0. Now, the assertion follows from (30)

using the information that c = V+z y has no vanishing components. ��
Remark 3

1. The necessary condition in Corollary 1 can be used to build an iterative algorithm
for updating the vector z where we start with z(0) obtained from the ESPRIT
Algorithm 2. We then search for z(j+1) by solving

(V′z(j+1) )
∗(IN+1 − Pz(j) )y = 0,

i.e., by computing the zeros of the polynomial with coefficient vector

diag(0, 1, 2, . . . , N) (IN+1 − Pz(j) )y
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and taking the subset ofM zeros which is closest to the previous set z(j). We will
further elaborate on this approach in the future.

2. This approach is different from most ideas to solve (27) in the literature, see
e.g. [7, 19, 20] and the recent survey [38]. In that papers, one first transfers the
problem of finding z ∈ C

M into the problem of finding the vector p = (pk)Mk=0 ∈
C
M+1 with ‖p‖2 = 1, such that p(zj ) =∑M

k=0 pkz
k
j = 0 for all j = 1, . . . ,M ,

thereby imitating the idea of Prony’s method. Introducing the matrix

XTp =

⎛

⎜⎜⎜⎝

p0 p1 . . . pM

p0 p1 . . . pM
. . .

. . .

p0 p1 . . . pM

⎞

⎟⎟⎟⎠ ∈ C
(N−M+1)×(N+1)

that satisfies XTp Vz = 0, we obtain a projection matrix

Pp := XpX
+
p = Xp[XTp Xp]−1XTp = (IN+1 − Pz),

and (28) can be rephrased as

argmin
p∈CM+1
‖p‖2=1

‖Ppy‖2
2 = argmin

p∈CM+1
‖p‖2=1

y∗Xp[XTp Xp]−1XTp y.

5.2 Gauß-Newton and Levenberg-Marquardt Iteration

Another approach than given in Remark 3 to solve the non-linear least squares
problem (28) is the following. We approximate r(z + δ) using its first order Taylor
expansion r(z)+ Jzδ. Now, instead of maximizing ‖r(z+ δ)‖2

2 we consider

argmax
δ∈CM

‖r(z)+ Jzδ‖2
2 = argmax

δ∈CM
(‖r(z)‖2

2 + (r(z)∗Jz δ+ δ∗J∗z r(z)+ δ∗J∗z Jz δ)

which yields

2 Re(J∗z r(z))+ 2J∗z Jz δ = 0.

Thus, starting with the vector z(0) obtained from Algorithm 2, the j th step of the
Gauß-Newton iteration is of the form

(J∗z(j)Jz(j) )δ
(j) = −Re (J∗z(j)r(z

(j)))
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to get the improved vector z(j+1) = z(j)+δ(j). Since (IN+1−Pz(j) )y may already be
close to the zero vector, the matrix (J∗

z(j)
Jz(j) ) is usually ill-conditioned. Therefore,

we regularize by changing the matrix in each step to (J∗
z(j)

Jz(j) )+ λj IM and obtain
the Levenberg-Marquardt iteration

((J∗z(j)Jz(j) )+ λj IM) δ(j) = −Re (J∗z(j)r(z
(j))).

In this algorithm, we need to fix the parameters λj , which are usually taken very
small. If we arrive at a (local) maximum, then the right-hand side in the Levenberg-
Marquardt iteration vanishes, and we obtain δ(j) = 0.

Remark 4

1. The considered non-linear least squares problem is also closely related to
structured low-rank approximation, see [18, 36]. Further, instead of the Euclidean
norm, one can consider the maximum norm, see [6, 12] or the 1-norm, see [32].

2. Some questions remain. How good is the approximation with exponential sums,
if (y�)N�=0 is known to be a sampling sequence of a function in a given smoothness
space, and what is the convergence rate with respect to the number of terms M?
The authors are not aware of a complete answer to this question. However, in
[6] it has been shown that the function 1/x can be approximated by an M-term
exponential sum with an error O(exp(c

√
M). Also the results in [5] and [23]

indicate that we can hope for an exponential decay of the approximation error
for a larger class of functions.

Acknowledgments The authors gratefully acknowledge support by the German Research Foun-
dation in the framework of the RTG 2088. Further, the authors thank the reviewers for many helpful
comments to improve the presentation of the results in this paper.
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On Eigenvalue Distribution of Varying
Hankel and Toeplitz Matrices with
Entries of Power Growth or Decay

Gidon Kowalsky and Doron S. Lubinsky

Abstract We study the distribution of eigenvalues of varying Toeplitz and Hankel
matrices such as

[
an+k−j

]
j,k

and
[
an+k+j

]
j,k

where an behaves roughly like nβ for
some non-0 complex number β, and n → ∞. This complements earlier work on
these matrices when the coefficients {an} arise from entire functions.

Keywords Toeplitz matrices · Hankel matrices · Eigenvalue distribution

1 Introduction and Results

The distribution of eigenvalues of Toeplitz matrices
[
ck−j

]
1≤j,k≤n is a much studied

topic, especially when their entries are trigonometric moments [1, 2, 5, 7, 9, 18, 19,
26, 29, 30]. There is a classic paper of Widom [28] dealing with both finite and
infinite Hankel matrices

[
cj+k

]
. There is a large literature on random Hankel and

Toeplitz matrices, see for example, [3, 10, 12, 13, 21, 22]. Generalizations of Toeplitz
matrix sequences are considered and studied in [7].

Our interest arises from classical function theory and Padé approximation. There
is a connection to complex function theory: Polya [20] proved that if f (z) =∑∞
j=0 aj /z

j can be analytically continued to a function analytic in the complex
plane outside a set of logarithmic capacity τ ≥ 0, then

lim sup
n→∞

∣∣∣det
[
an−j+k

]
1≤j,k≤n

∣∣∣
1/n2

≤ τ .

There are many extensions of this result [4, 16].
In the recent paper [16], we analyzed distribution of the eigenvalues of such

matrices under appropriate hypotheses on
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qj = aj−1aj+1

a2
j

.

The motivation comes from Padé approximation for functions such as

f (z) =
∞∑

j=0

zj / (j !)1/α , α > 0, (1.1)

for which (cf. [14, 15])

qj = exp

(
− 1

αj
+O

(
1

j2

))
.

More generally, we considered series

f (z) =
∞∑

j=0

aj z
j ,

that satisfy

qj = aj−1aj+1

a2
j

= exp

(
− 1

ρj

(
1+ o

(
ρ
−1/2
j

)))
,

with appropriate smoothly increasing or decreasing sequences
{
ρj
}

of positive
numbers. We proved, under mild conditions on

{
ρj
}
, the following assertions about

the eigenvalues
{
λnj
}n
j=1 of the normalized matrix 1

an

[
an+k−j

]
1≤j,k≤n:

1. The eigenvalue of largest modulus satisfies

max
1≤j≤n

∣∣λnj
∣∣ = √2πρn (1+ o (1)) .

2. The set of all limit points of
{
λnj /

√
2πρn

}
1≤j≤n,n≥1 is [0, 1].

3. The scaled zero counting measures

μn =
1

n

n∑

j=1

(
Re λnj

)
δ
λnj /
√

2πρm

admit the weak convergence

dμn
∗→ |π log t |−1/2 dt (1.2)
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in the sense that for each function f defined and continuous in an open subset of
the plane containing [0, 1],

lim
n→∞

∫
f dμn =

∫ 1

0
f (t) |π log t |−1/2 dt. (1.3)

The hypotheses in [16] treat a broad array of entire functions of zero, finite
positive, or infinite order, and also some power series of finite radius of convergence.
However the hypotheses exclude the case where the coefficients have power growth
or decay. It is the purpose of this paper to study that case. The general sequences
of Toeplitz matrices in [7] differ from our situation in that our sequences of varying
matrices require a different normalization as n→∞, and a different formulation for
the eigenvalue counting measures. Moreover, in Widom’s paper [28], the matrices
treated have the form

[
cj+k

]
0≤j,k≤n, whereas in this paper the top left-hand corner

element is am with m growing to ∞, so the results and methods are different. We
consider the Hankel matrices

Hmn =
[
am+k+j

]
0≤j,k≤n−1

and Toeplitz matrices

Tmn =
[
am+k−j

]
1≤j,k≤n

where an behaves roughly like nβ .
Our approach is also quite different from that in [16], due to the different growth

rates. There we used a similarity transformation on Tmn and showed that the eigen-

values of Tmn/am behaved like those of the matrix Emn = −
[
e
− (j−k)22ρn

]

1≤j,k≤n
.

There roughly O
(√
n
)

central bands of the matrix dominate and one can compute
the asymptotics of the trace of Ekmn for each fixed k = 0, 1, 2, . . . . This approach
fails for the sequences we consider here, as all bands contribute, and indeed we get
a different weak limit from that above.

2 Hankel Matrices

In this section, we state our results for Hankel matrices
[
am+j+k

]
0≤j,k≤n−1 where

the aj grow or decay like jβ . Of course if β is real, these matrices are real and
symmetric, so have real eigenvalues. In the special case, where β < 0 and aj = jβ ,
these matrices are actually positive definite, so have positive eigenvalues. Indeed
this follows directly from the fact that for β < 0 and j ≥ 1.
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jβ = 1

Γ (−β)
∫ 1

0
sj
(

log
1

s

)−β−1

s−1ds.

This identity in turn follows from the standard integral for the gamma function

Γ (−β) =
∫ ∞

0
t−β−1e−t dt

by the substitution s = e−t/j . Our first result allows possibly complex β. As above
we let

Hmn =
[
am+j+k

]
0≤j,k≤n−1 . (2.1)

We also let Λ(Hmn/am) denote the collection of all eigenvalues of Hmn/am, and
form the weighted counting measure

μmn =
1

n2

∑

λ∈Λ(Hmn/am)
λ2δλ/n. (2.2)

Thus μmn places mass
(
λ
n

)2
at 1
n
λ for each eigenvalue λ of Hmn/am. This is rather

different from the usual eigenvalue counting measures, but is needed in our situation.
The weighting reflects the fact that eigenvalues ofHmn/am tend to cluster around 0.
For general sequences of Hankel and other matrices, this clustering effect has been
extensively explored—see [6, 8, 23, 27].

Theorem 2.1 Fix k ≥ 1 and R > 0. Assume m = m(n)→ ∞ in such a way that
m/n→ R as n→ ∞. Assume that β ∈ C and given R > 0, we have as n→ ∞,
uniformly for 0 ≤ � ≤ Rm,

am+�
am

=
(

1+ �

m

)β
(1+ o (1)) . (2.3)

Then

(I)

lim sup
n→∞

1

n
sup {|λ| : λ ∈ Λ(Hmn/am)}

≤
∫ 1

0
max

0≤y≤1

(
1+ x + y

R

)Reβ

dx. (2.4)

In particular, the supports of
{
μmn

}
n≥1 are contained in a compact set

independent of n.
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(II)

lim sup
n→∞

∣∣μmn
∣∣ (C) ≤

∫ 1

0

∫ 1

0

(
1+ x + y

R

)2 Reβ

dx dy. (2.5)

(III) For k ≥ 1,

lim
n→∞

1

nk
T r

([
Hmn

am

]k)
= ck, (2.6)

where

ck = Rk
∫ 1/R

0

∫ 1/R

0
. . .

∫ 1/R

0
(1+ t1 + t2)β . . .

(1+ tk−1 + tk)β (1+ tk + t1)β dt1dt2 . . . dtk. (2.7)

Consequently for k ≥ 0,

lim
n→∞

∫
λkdμmn (λ) = ck+2. (2.8)

Corollary 2.2 Assume that β is real and all
{
aj
}
are real. Then there is a finite

positive measure ω with compact support on the real line such that for all functions
f continuous on the real line with compact support,

lim
n→∞

∫
f (t) dμmn (t) =

∫
f (t) dω (t) . (2.9)

The measure ω is uniquely determined by the moment conditions

∫
tkdω (t) = ck+2, k ≥ 0.

Remarks

(a) Note that (2.3) is satisfied if an = nβbn, where bn+�
bn

= 1 + o (1) for 0 ≤ � ≤
Rm. For example this is true if an = nβ (log n)γ (log log n)κ for some γ , κ .

(b) If we do not assume that the
{
aj
}

are real, then we can only prove convergence
for functions f analytic in a ball center 0 of large enough radius, as in
Corollary 3.2 below.

(c) It is obviously of interest to find an explicit form for ω. There is a classic
technique for simplices that provides an explicit value for similar Dirichlet-
Liouville multiple integrals [11, 25], but it does not seem to work for cubes.

(d) Note that our eigenvalue counting measure μmn has a different normalization
and scaling to standard ones, so we cannot apply standard results such as in [7].
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We prove Theorem 2.1 and Corollary 2.2 in Sect. 4.

3 Toeplitz Matrices

As above, we let

Tmn =
[
am+k−j

]
1≤j,k≤n .

Here we set aj = 0 if j < 0. We also let

νmn = 1

n2

∑

λ∈Λ(Tmn/am)
λ2δλ/n. (3.1)

We prove:

Theorem 3.1 Let R ≥ 1. Assume m = m(n)→∞ in such a way that m/n→ R

as n→∞. Let β ∈ C. Assume that given ε ∈ (0, 1), we have as n→∞, uniformly
for −m(1− ε) ≤ � ≤ (R − 1)m,

am+�
am

=
(

1+ �

m

)β
(1+ o (1)) . (3.2)

If R = 1, we assume in addition that Reβ > −1and

lim
ε→0+

⎛

⎝lim sup
n→∞

1

n |an|
[εn]∑

j=1

∣∣aj
∣∣

⎞

⎠ = 0. (3.3)

Then

(I)

lim sup
n→∞

1

n
sup {|λ| : λ ∈ Λ(Tmn/am)} ≤

∫ 1

0
max

0≤y≤1

(
1+ x − y

R

)Reβ

dx.

In particular, the supports of {νmn}n≥1 are contained in a compact set
independent of n.

(II)

lim sup
n→∞

|νmn| (C) ≤
∫ 1

0

∫ 1

0

(
1+ x − y

R

)2 Reβ

dx dy.

(III) For k ≥ 1,
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lim
n→∞

1

nk
T r

([
Tmn

am

]k)
= dk,

where

dk = Rk
∫ 1/R

0

∫ 1/R

0
. . .

∫ 1/R

0
(1+ t1 − t2)β . . .

(1+ tk−1 − tk)β (1+ tk − t1)β dt1dt2 . . . dtk.

Consequently for k ≥ 0,

lim
n→∞

∫
λkdνmn (λ) = dk+2. (3.4)

Corollary 3.2 There is a finite complex measure ω with compact support in
the plane such that for all functions f analytic in the ball center 0, radius∫ 1

0 max0≤y≤1
(
1+ x−y

R

)Reβ
dx,

lim
n→∞

∫
f (t) dνmn (t) =

∫
f (t) dω (t) . (3.5)

The measure ω admits the moment conditions
∫
tkdω (t) = dk+2, k ≥ 0.

Here in the case R = 1, we assume Reβ > −1.

We note that it is not clear if the complex valued measure ω is uniquely
determined by the moment conditions, as it is supported in the complex plane. We
prove the results of this section in Sect. 5.

4 Proof of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1(I) It follows from Gershgorin’s Theorem [17, p. 146] that
every eigenvalue λ of Hmn/am satisfies

|λ|
n
≤ max

0≤j≤n−1

1

n

n−1∑

k=0

∣∣∣∣
am+k+j
am

∣∣∣∣ .

Our hypothesis (2.3) gives uniformly for 0 ≤ j , k ≤ n− 1,
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∣∣∣∣
am+k+j
am

∣∣∣∣ =
∣∣∣∣∣

(
1+ k + j

m

)β
(1+ o (1))

∣∣∣∣∣

=
(

1+ k + j
Rn (1+ o (1))

)Reβ

(1+ o (1))

≤ max
1≤�≤n

(
1+ k + �

Rn

)Reβ

(1+ o (1)) ,

so that

|λ|
n
≤ 1

n

n−1∑

k=0

max
0≤y≤1

(
1+ k

Rn
+ y

R

)Reβ

+ o (1)

→
∫ 1

0
max

0≤y≤1

(
1+ x

R
+ y

R

)Reβ
dx

as n→∞. �
Proof of Theorem 2.1(II) By Schur’s Inequality [17, p. 142],

∣∣μmn
∣∣ (C) = 1

n2

∑

λ∈Λ(Hmn/am)
|λ|2 ≤ 1

n2

n−1∑

j,k=0

∣∣∣∣
am+j+k
am

∣∣∣∣
2

= 1

n2

n−1∑

j,k=0

∣∣∣∣∣

(
1+ j + k

m

)β
(1+ o (1))

∣∣∣∣∣

2

= 1

n2

n−1∑

j,k=0

(
1+ j + k

Rn

)2 Reβ

(1+ o (1))

→
∫ 1

0

∫ 1

0

(
1+ x + y

R

)2 Reβ

dx dy

as n→∞. �
Proof of Theorem 2.1(III) Now

1

nk
T r

([
Hmn

am

]k)

= 1

nk

n−1∑

j1=0

n−1∑

j2=0

· · ·
n−1∑

jk=0

am+j1+j2
am

am+j2+j3
am

. . .
am+jk−1+jk

am

am+jk+j1
am
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= 1

nk

n−1∑

j1=0

n−1∑

j2=0

· · ·
n−1∑

jk=0

(
1+ j1 + j2

m

)β (
1+ j2 + j3

m

)β
. . .

(
1+ jk + j1

m

)β
(1+ o (1))

= 1

nk

n−1∑

j1=0

n−1∑

j2=0

· · ·
n−1∑

jk=0

(
1+ j1 + j2

nR (1+ o (1))
)β (

1+ j2 + j3
nR (1+ o (1))

)β
. . .

(
1+ jk + j1

nR (1+ o (1))
)β
(1+ o (1))

= 1

nk

n−1∑

j1=0

n−1∑

j2=0

· · ·
n−1∑

jk=0

(
1+ j1 + j2

nR

)β (
1+ j2 + j3

nR

)β
. . .

(
1+ jk + j1

nR

)β
+ o (1) ,

since each of the nk terms are bounded independently of n and each index ji, 1 ≤
i ≤ k. The sum in the last line is a Riemann sum for the multiple integral

∫ 1

0

∫ 1

0
. . .

∫ 1

0

(
1+ x1 + x2

R

)β
. . .

(
1+ xk−1 + xk

R

)β (
1+ xk + x1

R

)β
dx1dx2 . . . dxk

and so we obtain the result (2.7), after making the substitution xj = Rtj for 1 ≤
j ≤ k. Finally, from (2.2),

∫
λjdμmn (λ) =

1

nj+2 T r

([
Hmn

am

]j+2
)
.

Then (2.8) follows. �
Proof of Corollary 2.2 Firstly as Hmn/am is real and symmetric, all its eigenvalues
are real. It follows that μmn is a positive measure supported on the real line.
Moreover, Theorem 2.1 shows that the supports of all μmn are contained in a
bounded interval independent of n, while their total mass is bounded independent of
n. By Helly’s Theorem (or if you prefer the Banach-Alaoglu Theorem) every subse-
quence of

{
μmn

}
contains another subsequence converging weakly to some positive

measure ω with compact support in the real line. It follows from Theorem 2.1(III)
that for j ≥ 0,
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∫
tj dω (t) = cj+2.

As the Hausdorff moment problem [24] (or moment problem for a bounded interval)
has a unique solution, ω is independent of the subsequence. Then the full sequence{
μmn

}
converges weakly to ω. �

For the largest eigenvalue for this positive case, we prove:

Lemma 4.1 Assume β is real and all
{
aj
}
are real. Let λmax denote the largest

eigenvalue of Hmn/am. Then

lim inf
n→∞

1

n
λmax ≥

∫ 1

0

∫ 1

0

(
1+ x + y

R

)β
dx dy

and

lim sup
n→∞

1

n
λmax ≤

(∫ 1

0

∫ 1

0

(
1+ x + y

R

)2β

dx dy

)1/2

.

Proof As Hmn/am is real symmetric, its largest eigenvalue λmax satisfies

λmax = sup

⎧
⎨

⎩

n−1∑

j,k=0

am+j+k
am

xjxk :
n−1∑

j=0

x2
j = 1

⎫
⎬

⎭ .

Choosing all xj = 1√
n

, we see much as above that

lim inf
n→∞

1

n
λmax ≥ lim

n→∞
1

n2

n−1∑

j,k=0

(
1+ j + k

Rn

)β
(1+ o (1))

=
∫ 1

0

∫ 1

0

(
1+ x + y

R

)β
dx dy.

In the other direction, two applications of the Cauchy-Schwarz inequality give, if∑n−1
j=0 x

2
j = 1,

∣∣∣∣∣∣

n−1∑

j=0

n−1∑

k=0

am+j+k
am

xjxk

∣∣∣∣∣∣

≤
n−1∑

j=0

∣∣xj
∣∣
(
n−1∑

k=0

(
am+j+k
am

)2
)1/2 (n−1∑

k=0

x2
k

)1/2



On Eigenvalue Distribution 163

≤
⎛

⎝
n−1∑

j=0

n−1∑

k=0

(
am+j+k
am

)2
⎞

⎠
1/2⎛

⎝
n−1∑

j=0

x2
j

⎞

⎠
1/2

,

so much as above,

lim sup
n→∞

1

n
λmax

≤ lim
n→∞

⎛

⎝ 1

n2

n−1∑

j,k=0

(
1+ j + k

Rn

)2β

(1+ o (1))
⎞

⎠
1/2

=
(∫ 1

0

∫ 1

0

(
1+ x + y

R

)2β

dx dy

)1/2

.

�

5 Proof of Theorem 3.1 and Corollary 3.2

Toeplitz matrices are more delicate, as reflected both in the hypotheses and proofs.
In the sequel, we let

φ (ε) = lim sup
n→∞

1

n |an|
[εn]+1∑

j=1

∣∣aj
∣∣ , ε ∈ [0, 1].

If R = 1, our hypothesis (3.3) is that φ (ε)→ 0 as ε→ 0+.

Proof of Theorem 3.1(I) It follows from Gershgorin’s Theorem that every eigen-
value λ of Tmn/am satisfies

|λ|
n
≤ max

1≤j≤n
1

n

n∑

k=1

∣∣∣∣
am+k−j
am

∣∣∣∣ . (5.1)

Assume first R > 1. We can use our asymptotic (3.2) to deduce that

|λ|
n
≤ max

1≤j≤n
1

n

n∑

k=1

∣∣∣∣∣

(
1+ k − j

m

)β
(1+ o (1))

∣∣∣∣∣

≤ max
1≤j≤n

1

n

n∑

k=1

(
1+ k − j

m

)Reβ

+ o (1)
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≤ max
1≤j≤n

1

n

n∑

k=1

(
1+ k − j

Rn (1+ o (1))
)Reβ

+ o (1)

≤ 1

n

n∑

k=1

max
0≤y≤1

(
1+ k

Rn
− y

R

)Reβ

+ o (1)

→
∫ 1

0
max

0≤y≤1

(
1+ x − y

R

)Reβ

dx.

Now suppose that R = 1. Choose a subsequence S of integers n and then for n ∈ S ,
choose j = j (n) ∈ [1, n], such that

lim sup
n→∞

(
max

1≤j≤n
1

n

n∑

k=1

∣∣∣∣
am+k−j
am

∣∣∣∣

)
= lim
n→∞,n∈S

1

n

n∑

k=1

∣∣∣∣
am+k−j(n)
am

∣∣∣∣ . (5.2)

By choosing a further subsequence, which we also denote by S , we may assume
that for some α ∈ [0, 1],

lim
n→∞

j (n)

n
= α.

Fix ε ∈
(

0, 1
2

)
. Observe that if k − j ≥ − (1− ε)m, we can apply (3.2).

Here as n → ∞, this inequality is asymptotically equivalent to k ≥
(α + ε − 1) n (1+ o (1)). Then for n ∈ S and j = j (n),

1

n

∑

k:1≤k≤n
and k−j≥−(1−ε)m

∣∣∣∣
am+k−j
am

∣∣∣∣

≤ 1

n

∑

k≤n:k≥max{1,(α+ε−1)n(1+o(1))}

∣∣∣∣∣

(
1+ k − j

m

)β
(1+ o (1))

∣∣∣∣∣

≤ 1

n

∑

k≤n:k≥max{1,(α+ε−1)n(1+o(1))}

(
1+ k − αn (1+ o (1))

n (1+ o (1))
)Reβ

+ o (1)

=
∫ 1

max{0,α+ε−1}
(1+ x − α)Reβ dx + o (1) .

Next, recall that aj = 0 for j < 0. If k − j ≤ − (1− ε)m, then m+ k − j ≤ εm.
Then as m/n→ 1 as n→∞, we have for large enough n and j ≥ 1,
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1

n

∑

k:1≤k≤n
and k−j≤−(1−ε)m

∣∣∣∣
am+k−j
am

∣∣∣∣

≤ 1+ o (1)
m |am|

[εm]+1∑

�=1

|a�| ≤ φ (ε)+ o (1) .

Adding the two sums together, we obtain

lim sup
n→∞

(
max

1≤j≤n
1

n

n∑

k=1

∣∣∣∣
am+k−j
am

∣∣∣∣

)

≤
∫ 1

max{0,α+ε−1}
(1+ x − α)Reβ dx + φ (ε) .

Letting ε→ 0+, and using Dominated Convergence, we obtain

lim sup
n→∞

(
max

1≤j≤n
1

n

n∑

k=1

∣∣∣∣
am+k−j
am

∣∣∣∣

)
≤
∫ 1

max{0,α−1}
(1+ x − α)Reβ dx

≤
∫ 1

0
max

0≤y≤1
(1+ x − y)Reβ dx.

So we obtain the result for R = 1. �
Proof of Theorem 3.1(II) As in the proof of Theorem 2.1(II), Schur’s inequality
gives

|νmn| (C) = 1

n2

∑

λ∈Λ(Tmn/am)
|λ|2 ≤ 1

n2

n−1∑

j,k=0

∣∣∣∣
am+k−j
am

∣∣∣∣
2

.

Suppose first R > 1. Then for large enough n, if 0 ≤ j , k ≤ n− 1,

m+ k − j ≥ Rn (1+ o (1))− n+ 1

≥ (R − 1) n+ o (n)
≥ R − 1

R
m+ o (m) ,

so uniformly for such j, k, (3.2) gives

am+k−j
am

=
(

1+ k − j
Rn

)β
(1+ o (1)) . (5.3)
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Then

|νmn| (C) ≤ 1

n2

n−1∑

j,k=0

∣∣∣∣
am+k−j
am

∣∣∣∣
2

≤ 1

n2

n−1∑

j,k=0

(
1+ k − j

Rn

)2 Reβ

(1+ o (1))

→
∫ 1

0

∫ 1

0

(
1+ y − x

R

)2 Reβ

dx dy

as n→∞. Next, let R = 1. Much as above, we can see that given ε ∈ (0, 1),

1

n2

∑

0≤j,k≤n−1:k−j≥−(1−ε)m

∣∣∣∣
am+k−j
am

∣∣∣∣
2

may be bounded above by a Riemann sum for the integral

∫ ∫

{(x,y):x,y∈[0,1] and y−x≥−(1−ε)}
(1+ y − x)2 Reβ dx dy

multiplied by 1+ o (1). To deal with the tail sum, first observe that as m = m(n) =
m(1+ o (1)),

1

n

3n∑

j=1

∣∣aj
∣∣

|am| ≤ (1+ o (1)) φ
(

1

4

)
+ 1

n

3n∑

j=
[

1
4n
]

∣∣∣∣
aj

an

∣∣∣∣

≤ (1+ o (1)) φ
(

1

4

)
+ 1+ o (1)

n

2n∑

�=
[

1
4n
]
−n

∣∣∣∣
an+�
an

∣∣∣∣

≤ (1+ o (1)) φ
(

1

4

)
+ 1+ o (1)

n

2n∑

�=
[

1
4n
]
−n

∣∣∣∣1+
�

n

∣∣∣∣
Reβ

(1+ o (1))

≤ (1+ o (1)) φ
(

1

4

)
+ (1+ o (1))

∫ 2

−3/4
|1+ x|Reβ dx.

It follows that for some C independent of m, n,

1

n

3n∑

j=1

∣∣aj
∣∣

|am| ≤ C. (5.4)
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Then

1

n2

∑

0≤j,k≤n−1:k−j≤−(1−ε)m

∣∣∣∣
am+k−j
am

∣∣∣∣
2

≤
(

1

n
sup

1≤�≤2m

∣∣∣∣
a�

am

∣∣∣∣

)(
1

n

[εm]∑

�=1

∣∣∣∣
a�

am

∣∣∣∣

)

≤ Cφ (ε) ,

in view of (5.4). This and the estimate above give

lim sup
n→∞

|νmn| (C)

= lim sup
n→∞

1

n2

∑

λ∈Λ(Tmn/am)
|λ|2

≤
∫ ∫

{(x,y):x,y∈[0,1] and y−x≥−(1−ε)}
(1+ y − x)2 Reβ dx dy + Cφ (ε) .

Letting ε→ 0+ and using our hypothesis (3.3) gives the result. �
Proof of Theorem 3.1(III)

Step 1 Suppose first R > 1. Then for large enough n, we have (5.3) and also

sup
1≤j,�≤n

∣∣∣∣
am+j−�
am

∣∣∣∣ = O (1) . (5.5)

Then

1

nk
T r

([
Tmn

am

]k)

= 1

nk

n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

am+j2−j1
am

am+j3−j2
am

. . .
am+jk−jk−1

am

am+j1−jk
am

= 1

nk

n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

(
1+ j2 − j1

m

)β (
1+ j3 − j2

m

)β
. . .

(
1+ j1 − jk

m

)β
(1+ o (1))

= 1

nk

n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

(
1+ j2 − j1

Rn (1+ o (1))
)β (

1+ j3 − j2
Rn (1+ o (1))

)β
. . .
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(
1+ j1 − jk

Rn (1+ o (1))
)β
(1+ o (1))

= 1

nk

n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

(
1+ j2 − j1

Rn

)β (
1+ j3 − j2

Rn

)β
. . .

(
1+ j1 − jk

Rn

)β
+ o (1) .

The sum in the last line is a Riemann sum for the multiple integral

∫ 1

0

∫ 1

0
. . .

∫ 1

0

(
1+ x2 − x1

R

)β (
1+ x3 − x2

R

)β
. . .

(
1+ x1 − xk

R

)β
dx1dx2 . . . dxk

and so we obtain the result, after making the substitution xj = Rtj for 1 ≤ j ≤ k.
Step 2 Now we turn to the more delicate case where R = 1 and Reβ > −1.

Fix ε > 0. We observe that if k − j ≥ −m(1− ε), then we have (5.3). Then
identifying jk+1 = j1,

1

nk

n∑

1≤j1,j2,...,jk≤n
all ji+1−ji≥−m(1−ε)

am+j2−j1
am

am+j3−j2
am

. . .
am+jk−jk−1

am

am+j1−jk
am

= 1

nk

n∑

1≤j1,j2,...,jk≤n
all ji+1−ji≥−m(1−ε)

(
1+ j2 − j1

m

)β (
1+ j3 − j2

m

)β
. . . (5.6)

(
1+ j1 − jk

m

)β
(1+ o (1))

= 1

nk

n∑

1≤j1,j2,...,jk≤n
all ji+1−ji≥−m(1−ε)

(
1+ j2 − j1

n

)β (
1+ j3 − j2

n

)β
. . .

(
1+ j1 − jk

n

)β
+ o (1)

=
∫
. . .

∫

S
(1+ x2 − x1)

β (1+ x3 − x2)
β . . .

(1+ x1 − xk)β dx1dx2 . . . dxk + o (1)

where S = {
(x1, x2, . . . , xk) ∈ [0, 1]k : xj+1 − xj ≥ − (1− ε) for each j

}
.

Here we identify xk+1 = x1. To treat the remaining terms in the sum where
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at least one ji+1 − ji ≤ −m(1− ε), we proceed as follows: necessarily
ji+1 ≤ n−m+ εm ≤ 2εm, for large enough n, while 1 ≤ m+ ji+1 − ji ≤ εm,
so

1

n

∑

ji :ji+1−ji≤−m(1−ε)

∣∣∣∣
am+ji+1−ji
am

∣∣∣∣ ≤
1+ o (1)
n

1

|am|
[εm]∑

�=1

|a�| ≤ (1+ o (1)) φ (ε) .

Then

1

nk

n∑

1≤j1,j2,...,jk≤n
for some i, ji+1−ji≥−m(1−ε)

∣∣∣∣
am+j2−j1
am

am+j3−j2
am

. . .
am+jk−jk−1

am

am+j1−jk
am

∣∣∣∣

≤ Ck−1 (1+ o (1)) φ (ε) ,

recall (5.4). We now combine this with (5.6) and then let ε → 0+ to get the
result. Also (3.4) follows from (3.1). �

Proof of Corollary 3.2 Since {νmn} have support in a compact set independent of
n and total mass bounded independent of n, we can choose weakly convergent
subsequences with limit ω. (One can think of applying Helly’s Theorem to the
decomposition of μmn into first real and imaginary parts and then positive and
negative parts of each of those.) All weak limits of subsequences have the same
moments

{
dj+2

}
j≥0. We have that if f is a polynomial,

lim
n→∞

∫
P (t) dνmn (t) =

∫
P (t) dω (t) .

Note that the same limit holds for the full sequence of integers because all weak
limits ω have the same power moments. As such polynomials are dense in the class
of functions analytic in any ball, the result follows. �
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On the Gradient Conjecture for
Quadratic Polynomials

Tom McKinley and Boris Shekhtman

Abstract The gradient conjecture asserts that for homogeneous polynomials f
and p the equality p(∇f ) = 0 implies p(∇)f = 0. We verify this conjecture
for quadratic polynomials and present a few applications to density problems and
characterization of derivation operator.

Keywords Homogeneous polynomial · Gradient · Algebraic dependency

1 Introduction

Gradient conjecture was formulated and verified in a few specific cases in [9].

Conjecture 1 (Gradient Conjecture) Let p and f be homogeneous polynomials in
d variables such that

p(,f ) = 0 (1)

then

p(,)f = 0 (2)

Here , stands for the gradient, i.e.,

, =
(
∂

∂x1
, . . . ,

∂

∂xd

)
.
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Hence the assumption of the conjecture (1) says that f satisfies a certain nonlinear
first order PDE while the conclusion asserts that f satisfies a higher order linear
PDE with constant coefficients.

It was shown in [9] that the conjecture holds in 4 variables and also holds when
p depends on 3 variables while f depends on d variables.

The main result of this paper is to verify the conjecture in case when the
polynomial p is quadratic. In particular we show that if

d∑

i=1

Ai

(
∂f

∂xi

)2

= 0

for some constants Ai then

d∑

i=1

Ai

(
∂2f

∂x2
i

)
= 0.

Setting the constants Ai = 1 we conclude that if

d∑

i=1

(
∂f

∂xi

)2

= 0

then the polynomial f is harmonic.
This conjecture has strong correlation with a question posed by Allan Pinkus

and Bronislav Wajnryb. In their survey paper [11] they introduced and studied the
density of the space

P(f ) := span
{
(f (x+ b))k : b ∈ R

d , k ∈ Z+
}

(3)

for a fixed polynomial f .
They showed that if P(f ) is not dense in the space C (Rn) then the Hessian

determinant of f is identically zero and asked if the converse is true for
homogeneous polynomials f .

Observe that the Hessian determinant is the determinant of the Jacobian map of
,f : kn → k

n. Hence the condition is equivalent to the vanishing of the Jacobian
which, in turn, holds if and only if the first partial derivative of f are polynomially
dependent (cf. [3]). Thus (1) holds for some polynomial p. The homogeneity of f
implies that p can be chosen to be homogeneous.

By the Chain rule it follows from (1) that p(,) (f k) = 0 for all k ∈ Z+ and
the gradient conjecture would imply that p(,)f k = 0 for all k ∈ Z+ and thus
p(,)g = 0 for all g ∈ P(f ). And this (cf. [8]) implies that P(f ) is not dense in
C (Rn).
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2 Notations and Historic Preliminaries

Since the results of this paper are valid for complex polynomials as well as real
polynomials, we will now switch to polynomials over complex field.

We use C [x1, . . . , xd ] = C[x] to denote the set of all polynomials in d variables
x1, . . . , xd with complex coefficients. For a polynomial f ∈ C[x] we use fi to

denote the partial derivative ∂f
∂xi

and fi,j to denote ∂2f
∂xi∂xj

The Hessian matrixHf (x),
is the matrix of second partial derivatives

Hf (x) =
(
fi,j (x)

)d
i,j=1

while Hf (x) denotes the determinant of Hf (x).
As was noted earlier Hf (x) vanishes identically if and only if there exists a

polynomial p ∈ C[x] such that

p(,f ) = p (f1, . . . , fd) = 0.

If f is a homogeneous then p could also be chosen to be homogeneous.
The study of such polynomials was initiated by Hesse (cf. [6]) and finalized by

Gordan and Nöther [5] as well as [10]. Gordan and Nöther the result holds for in
four variables and disproved the claim in 5 variables:

Theorem 1 (Gordan and Nöther [5]) If d ≤ 4 and the Hessian determinant of f
vanishes then f1, . . . , fd are linearly dependent.

An easy counterexample is due to Perazzo [10]

f (x1, x2, x3, x4, x5) := x1x
2
4 + x2x4x5 + x3x

2
5

By direct calculation we see that the first partial are linearly independent and the
equation

f1f3 − (f2)
2 = 0

holds.
In the last 20 years the subject became popular again (cf. [1, 2, 4, 7, 12]) and

many of the results in [5] had been verified and rewritten in a modern language. In
particular we will need the following (cf. [2]):

Theorem 2 Suppose that p and f satisfy (1), Then for every x ∈ R
d

f (x) = f (x+ t , p(,f (x))) for all t ∈ R
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and for every i = 1, . . . , d

fi(x) = fi(x+ t , p(,f (x))) for all t ∈ R. (4)

It simply asserts that for every fixed x ∈ R
d the line

x+ t , p(,f )(x) = x+ t (p1 (,f (x)) , . . . , pd(,f (x)))

is a characteristic of the partial differential equation (1).

3 Main Results

Theorem 3 Let p and f satisfy (1). Then the matrixHp(,f (x))Hf (x) is nilpotent.
Proof The proof involves somewhat tedious computation using the chain rule.
From (4) we obtain

fi,j (x) = ∂fi(x)
∂xj

= ∂

∂xj
fi ((x1, . . . , xd)+ t (p1(,f (x)), . . . , pd(,f (x))))

=
d∑

k=1

fi,k(x+ t , p(,f (x))) ∂
∂xj

(xk + tpk(,f (x)))

=
d∑

k=1

[
fi,k(x+ t , p(,f (x)))

] [
δjk + t ∂

∂xj
(pk (f1, . . . , fd))

]

=
d∑

k=1

[
fi,k(x+ t , p(,f (x)))

]
[
δjk + t

d∑

m=1

pk,m(,f (x))fm,j
]

where

δjk =
{

1 if j = k
0 if j �= k

Interpreting the terms fi,j as entries in the Hessian Hf and pk,m as entries in the
matrix Hp we conclude that

Hf (x) = Hf (x+ t , p(,f (x)))
(
I + tHp(,f (x)

)
Hf (x).

Notice that Hf (x + t , p(,f (x))) is a matrix with polynomial entries in the
variable t . Hence

Hf (x+ t , p(,f (x))) = Hf (x)+ tM1(x)+ t2M2(x)+ · · · + tNMN(x)
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for some matricesM1(x), . . . ,MN(x) with N = deg f − 2. Hence

Hf (x) =
(
Hf (x)+tM1(x)+t2M2(x)+ · · · + tNMN(x)

) (
I+tHp(,f (x))Hf (x)

)

= Hf (x)+ t
(
M1(x)+Hp(,f (x))Hf (x)

)

+
N+1∑

s=1

t s+1 (Ms+1(x)+Ms(x)Hp(,f (x))Hf (x)
)
).

With an understanding that matrices Hf and Ms depend on x and the matrices
Hp depend on ,f (x) we can rewrite the last identity as

Hf = Hf + t
(
M1 +HfHpHf

)+ t2(M2 +M1HpHf )

+ · · · + t s(Ms +Ms−1HpHf )+ · · · + tN+1MNHpHf .

And since the matrix Hf on the left of this identity does not depend on t , the
matrix coefficients of the positive powers of t are equal to zero.

Thus M1 = −HfHpHf , M2 = HfHpHfHpHf = Hf
(
HpHf

)2
, . . . ,Ms =

(−1)sHf
(
HpHf

)s and, since MNHpHf = 0 we have (−1)NHf
(
HpHf

)N = 0.
Therefore

Hp

(
Hf
(
HpHf

)N) = (HpHf
)N+1 = 0

which proves the theorem.

As a corollary we obtain the main result:

Theorem 4 Let p (x1, . . . xd) =
d∑

k,j=1,i≥j
Akj xkxj be a quadratic polynomial for

some constant coefficient Ai,j . Then the gradient conjecture holds.

Proof In this case the Hessian Hp(,f (x)) is just a constant symmetric matrix

Hp(,f (x)) =

⎛

⎜⎜⎜⎝

2A1,1 A1,2 . . . A1,d

A2,1 2A2,2 . . . A2,d
...

...
. . .

...

Ad,1 Ad,2 . . . 2Ad,d

⎞

⎟⎟⎟⎠

while Hf (x) is the symmetric matrix

Hf (x) =

⎛

⎜⎜⎜⎝

f1,1(x) f1,2(x) . . . f1,d (x)
f2,1(x) f2,2(x) . . . f2,d (x)
...

...
. . .

...

fd,1(x) fd,2(x) . . . fd,d(x)

⎞

⎟⎟⎟⎠ .
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By the previous theorem

0 = tr
(
Hp(,f (x))Hf (x)

) =
d∑

k=1

d∑

j=1

(
1+ δj,k

)
Ak,j fj,k

=
d∑

k=1

2Ak,kfk,k +
d∑

k,j=1,k �=j
Akjfk,j

where, as usual,

δj,k :=
{

1 if j = k
0 if j �= k .

Observe that the matrices Hp and Hf are symmetric, hence

d∑

k,j=1,k �=j
Akjfk,j = 2

d∑

k,j=1,k>j

Ak.j fk,j

and

0 = 2

⎛

⎝
d∑

k,j=1,i≥j
Akjfk,j

⎞

⎠

which is the desired conclusion.

The following corollary to this theorem is a partial resolution of the question
posed by Pinkus and Wajnryb:

Theorem 5 Let f be a homogeneous polynomial in d variable and p be a
homogeneous quadratic polynomial in the same variables. If p(,f ) = 0 then P(f )
defined by (3) is not dense in C(Rd).

4 Application to Derivations Operators

Next we will present an interesting interpretation of the Theorem 4 to the derivation
operators.

Let A be a subalgebra of C [x1, . . . , xd ].

Definition 1 A linear operator L : A → C [x1, . . . , xd ] is called a derivation if
L(fg) = fLg + gLf for all f, g ∈ A.
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Theorem 6 Let A(f ) be a subalgebra of C [x1, . . . , xd ] generated by a single
homogeneous polynomial f ∈ C [x1, . . . , xd ] and let L = p(,) for some
homogeneous polynomial of order 2. Then L is a derivation on A(f ) if and only
if L = 0 on A(f ).

Proof Observe that

∂2

∂xk∂xj
f 2 = ∂

∂xk

(
2f

∂

∂xj
f

)
= 2

(
∂

∂xk
f

)(
∂

∂xj
f

)
+ 2f

∂2

∂xk∂xj
f

Hence

p(,)f 2 =
(∑

Ak,j
∂2

∂xk∂xj

)
f 2 = p(,f )+ 2f (p(,)f ). (5)

If p(,) is a derivation on A(f ) then

p(,)f 2 = 2fp(,)f

which together with (5) implies p(,)f = 0 and thus p(,)f 2 = 0. Inductively we
obtain

p(,)f m = mfm−1(p(,)f ) = 0

which proves the theorem.

From this it follows that the gradient conjecture is equivalent to the following:

Conjecture 2 Let p be a homogeneous polynomial. The p(,) is a non-trivial
derivation on A(f ) if and only if p is of order one.

5 One More Case of the Gradient Conjecture

We finish this paper by verifying the gradient conjecture in one more case:

Theorem 7 Let p and f be homogeneous polynomials onCd such that p(∇f ) = 0
and

f =
d∑

j=1

lmj

where lj ’s are linear forms on C
d that are linearly independent. Then p(,)f = 0.
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Proof Suppose that

lj (x) =
d∑

k=1

ak,j xk.

Then

,lmj = mlm−1
j

(
a1,j , . . . , ad,j

)

and

p(,f ) = p
⎛

⎝m
d∑

j=1

lm−1
j (a1,j , . . . , ad,j )

⎞

⎠ = 0

for all (x1, . . . , xd) ∈ C
d . Since the linear forms are linearly independent we can

find x = (x1, . . . , xd) ∈ C
d such that lt (x) = δt,j .

Then

0 = p(,f )(x) = p (a1,t , . . . , ad,t
)
.

Notice that

∂n

∂x
α1
1 . . . ∂x

αd
d

lmt =
m!

(m− n)! l
m−n
t · aα1

1,t · . . . · aαdd,t (6)

and since p is homogeneous

p(,) lmt =
m!

(m− n)! l
m−n
t p

(
a1,t , . . . , ad,t

) = 0

by (6). In other words lmt ∈ kerp(,) for every t = 1, . . . , d and thus f ∈ kerp(,).
Remark 1 Notice that, while every homogeneous polynomial can be written as the
sum of powers of linear forms, those linear forms, unfortunately, are not necessarily
linearly independent.
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Balian-Low Theorems in Several
Variables

Michael Northington V and Josiah Park

Abstract Recently, Nitzan and Olsen showed that Balian-Low theorems (BLTs)
hold for discrete Gabor systems defined on Zd . Here we extend these results to
a multivariable setting. Additionally, we show a variety of applications of the
Quantitative BLT, proving in particular nonsymmetric BLTs in both the discrete
and continuous setting for functions with more than one argument. Finally, in direct
analogy of the continuous setting, we show the Quantitative Finite BLT implies the
Finite BLT.

Keywords Frames · Gabor systems · Riesz bases · Time-frequency analysis ·
Uncertainty principles · Balian-Low theorems

1 Introduction

Gabor systems are fundamental objects in time-frequency analysis. Given a setΛ ⊂
R

2l and a function g ∈ L2(Rl ), the Gabor system G(g,Λ) is defined as

G(g,Λ) = {g(x −m)e2πin·x}(m,n)∈Λ.

When Λ is taken to be Z
2l , G(g) = G(g,Z2l ) is referred to as the integer

lattice Gabor system generated by g. The Balian-Low theorem (BLT) and its
generalizations are uncertainty principles concerning the generator g of such a
system in the case that G(g,Λ) forms a Riesz basis.

Theorem 1.1 (BLTs) Let g ∈ L2(R) and suppose that the Gabor system G(g) =
G(g,Z2) is a Riesz basis for L2(R).

(i) If 1 < p <∞ and 1
p
+ 1
q
= 1, then either,
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∫

R

|x|p|g(x)|2dx = ∞ or
∫

R

|ξ |q |̂g(ξ)|2dξ = ∞.

(ii) If g is compactly supported, then

∫

R

|ξ ||̂g(ξ)|2dξ = ∞.

This part also holds with g and ĝ interchanged.

The first theorem, stated independently by Balian [2] and Low [12], was the
symmetric (i.e., p = q = 2) case of the theorem above and originally was stated
only for orthonormal bases. The first proofs contained a common error, and a new,
correct proof came later from Battle [3]. Soon afterwards, Coifman, Daubechies,
and Semmes [8] completed the argument in the original proofs and extended the
result to all Riesz bases. The second part of Theorem 1.1 was originally given by
Benedetto, Czaja, Powell, and Sterbenz [6], while Gautam [9] extended the BLT to
the full range of nonsymmetric (i.e., p �= q) cases above.

The Balian-Low Theorem has been generalized in many ways. For example,
Gröchenig, Han, Heil, and Kutyniok [10] extended the symmetric Balian-Low
theorem to multiple variables.

Theorem 1.2 (Theorem 9, [10]) Let g ∈ L2(Rl ) and consider the Gabor system
G(g,Z2l ) = {g(x − m)e2πin·x}(m,n)∈Z2l . If G(g,Z2l ) is a Riesz basis for L2(Rl ),
then for any 1 ≤ k ≤ l, either

∫

Rl

|xk|2|g(x)|2dx = ∞ or
∫

Rl

|ξk|2 |̂g(ξ)|2dξ = ∞.

Another important generalization is the following Quantitative BLT of Nitzan
and Olsen, which quantitatively bounds the time-frequency localization of a square-
integrable function.

Theorem 1.3 (Theorem 1, [13]) Let g ∈ L2(R) be such that G(g) is a Riesz basis
for L2(R). Then, for any R,L ≥ 1, we have

∫

|x|≥R
|g(x)|2dx +

∫

|ξ |≥L
|̂g(ξ)|2dξ ≥ C

RL
, (1)

where the constant C only depends on the Riesz basis bounds for G(g).

This result has also been extended to Gabor systems in L2(Rl ) in [15]. (See
Theorem 5.1 below.) The Quantitative BLT is a strong result. In particular, a function
satisfying (1) automatically satisfies the conclusions of both parts of Theorem 1.1.
Later, we will use the Quantitative BLT and its higher dimensional analog to show
that nonsymmetric versions of Theorem 1.2 hold for Rl , l ≥ 2.
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In applications Gabor systems are used in signal analysis to give alternate
representations of data with desirable properties. Often it is useful to have window
functions which measure locally in time for efficiency while capturing local
frequency information simultaneously. Uncertainty theorems like the BLT limit
how well localized a window can be in the time and frequency domains. This
led Lammers and Stampe [11] to conjecture that finite versions of the BLT should
hold for discrete Gabor systems. The essence of this question was answered in one
dimension by Nitzan and Olsen [14] who showed that versions of both the BLT and
the quantitative BLT exist for discrete Gabor systems.

In the finite setting, instead of functions in L2(R), complex–valued sequences
defined on Zd = Z/dZ act as the object of study, where d = N2 for some N ∈
N. It is sometimes useful to fix representatives of Zd in connection with the view
of Zd as a discretization of R, and a convenient choice in what follows is Id =
[−d/2, d/2)⋂Z = {−� d2 �, . . . , d − � d2 � − 1}. Such sequences b may be thought
of as samples of a continuous function g defined on [−N2 , N2 ] at integer multiples
of 1/N so that b(j) = g(j/N) for j ∈ Id .

Let �d2 denote the set of complex-valued sequences on Zd = Z/dZ with the norm

‖b‖2
�_2d =

1

N

∑

j∈Zd
|b(j)|2. (2)

With this normalization and the sampling view noted above, ‖b‖2
�d2

approximates

‖g‖2
L2[−N2 , N2 ]

. We define the discrete Gabor system generated by b, denoted Gd(b),

to be,

Gd(b) = {b(j − nN)e2πi mj
N }(n,m)∈{0,...,N−1}2 = {b(j − n)e2πi mj

d }(n,m)∈(NZd )
2 .

Here NZd = {Nj : j ∈ Z} mod d so that #(NZd) = N . This definition lines up
with the definition of G(g) above, as shifting g by n corresponds to shifting b by
nN , and modulation of g, g(x)e2πimx , corresponds to a new sequence b(j)e2πimj/N .

To formulate the (symmetric) BLT in a finite setting, it is useful to consider
an equivalent condition to the conclusion of the BLT which is in terms of the
distributional derivatives of g and ĝ, Dg and Dĝ. In particular, the condition

∫

R

|x|2|g(x)|2dx = ∞ or
∫

R

|ξ |2 |̂g(ξ)|2dξ = ∞ (3)

is equivalent to

Dg /∈ L2(R) or Dĝ /∈ L2(R). (4)

For finite generators, b ∈ �d2 , we instead work with differences,



184 M. Northington V and J. Park

Δb = {b(j + 1)− b(j)}j∈Zd ,

and note that NΔb approximates the derivative of g. We normalize the discrete
Fourier transform of b by

Fd(b)(k) = 1

N

∑

j∈Zd
b(j)e−2πi jk

d ,

so that Fd is an isometry on �d2 . Then the quantity

‖NΔb‖2
�d2
+ ‖NΔFd(b)‖2

�d2

acts as a discrete counterpart to the expressions in Eq. (4). Recall that a sequence
{hn} is a Riesz basis for a separable Hilbert space, H, if and only if it is complete in
H and there exists constants 0 < A ≤ B <∞ such that

A

(
∑

n

|cn|2
)
≤
∥∥∥∥∥
∑

n

cnhn

∥∥∥∥∥
H
≤ B

(
∑

n

|cn|2
)
, (5)

for any sequence (equivalently, a Riesz basis is the image of an orthonormal basis
under a bounded invertible operator on H). HereA andB are referred to as the lower
and upper Riesz basis bounds, respectively. We say that b generates an A,B-Gabor
Riesz basis if Gd(b) is a basis for �d2 with Riesz basis bounds A and B.

The following Finite BLT of Nitzan and Olsen shows optimal bounds on the
growth of this quantity for the class of sequences which generate Gabor Riesz bases
with fixed Riesz basis bounds.

Theorem 1.4 (Theorem 4.2, [14]) For 0 < A ≤ B < ∞, there exists a constant
cAB > 0, depending only on A and B, such that for any N ≥ 2 and for any b ∈ �d2
which generates an A,B-Gabor Riesz basis for �d2 ,

cAB log(N) ≤ ‖NΔb‖2
�d2
+ ‖NΔFd(b)‖2

�d2
.

Conversely, there exists a constant CAB such that for anyN ≥ 2, there exists b ∈ �d2
which generates and A,B-Gabor Riesz basis for �d2 such that

‖NΔb‖2
�d2
+ ‖NΔFd(b)‖2

�d2
≤ CAB log(N).

Nitzan and Olsen also show that the continuous BLT, Theorem 1.1, follows from
this discrete version and that the following Finite Quantitative BLT also holds.

Theorem 1.5 (Theorem 5.3, [14]) Let A,B > 0. There exists a constant CAB > 0
such that the following holds. Let N ≥ 200

√
B/A and let b ∈ �d2 generate an A,B-
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Gabor Riesz basis. Then, for all positive integers 1 ≤ Q,R ≤ (N/16)
√
A/B, we

have

1

N

d−1∑

j=NQ
|b(j)|2 + 1

N

d−1∑

k=NR
|Fdb(k)|2 ≥ CAB

QR
.

1.1 Extension to Several Variables

The first goal of this paper is to extend Theorems 1.4 and 1.5 to several variables,
which we state below in Theorems 1.6 and 1.7.

We consider complex-valued sequences on Z
l
d = Zd×· · ·×Zd for l ≥ 1, and we

denote the set of all such sequences as �d,l2 . The view of these sequences as samples
of a continuous g ∈ L2([−N2 , N2 ]l), where b(j) = g(j/N) for j = (j1, . . . , jl) ∈ I ld
leads to the normalization

‖b‖2
�
d,l
2
= 1

Nl

∑

j∈Zld
|b(j)|2 = 1

Nl

∑

j∈I ld
|b(j)|2.

The discrete Fourier transform, Fd,l , on �d,l2 , is given by

Fd,l(b)(k) = 1

Nl

∑

j∈Zld
b(j)e−2πi j·k

d .

Under this normalization, Fd,l is an isometry on �d,l2 . The Gabor system generated
by b, Gd,l(b) is given by

Gd,l(b) = {b(j−Nn)e2πi j·m
N }(n,m)∈{0,...,N−1}2l = {b(j− n)e2πi j·m

d }(n,m)∈(NZd )
2l .

For any k ∈ {1, . . . , l}, let Δk : �d,l2 → �
d,l
2 be defined by

Δkb(j) = b(j+ ek)− b(j),

where {ek}k∈{1,...,l} is the standard orthonormal basis for Rl . Then NΔkb approxi-
mates the partial derivative ∂g

∂xk
.

We have the following generalization of Theorem 1.4.

Theorem 1.6 Fix constants 0 < A ≤ B < ∞. With the same constants cAB and
CAB from Theorem 1.4, for N ≥ 2, 1 ≤ k ≤ l, and for any b ∈ �d,l2 which generates

an A,B-Gabor Riesz basis for �d,l2 , we have



186 M. Northington V and J. Park

cAB log(N) ≤ ‖NΔkb‖2
�
d,l
2
+ ‖NΔkFd,l(b)‖2

�
d,l
2
.

Conversely, for N ≥ 2 and 1 ≤ k ≤ l, there exists b ∈ �d,l2 which generates an
A,B-Gabor Riesz basis such that

‖NΔkb‖2
�
d,l
2
+ ‖NΔkFd,l(b)‖2

�
d,l
2
≤ CAB log(N).

We provide a direct proof of Theorem 1.6 in Sect. 3. In Sect. 4, we extend
Theorem 1.5 in the following way. For simplicity of notation, for t > 0, we let
{|jk| ≥ t} denote the set {j ∈ I ld : |jk| ≥ t}.
Theorem 1.7 Let A,B > 0 and l ∈ N. There exists a constant C > 0 depending
only on A, B, and l, such that the following holds. Let N ≥ 200

√
B/A and let

b ∈ �d,l2 generate an A,B-Gabor Riesz basis for �d,l2 . Then, for any 1 ≤ k ≤ l and
all integers 1 ≤ Q,R ≤ (N/16)

√
A/B, we have

1

Nl

∑

|jk |≥NR2
|b(j)|2 + 1

Nl

∑

|jk |≥NQ2
|Fd,lb(j)|2 ≥ C

QR
.

1.2 Finite Nonsymmetric BLTs

In Sect. 5, we prove nonsymmetric versions of the finite BLT. In the process,
we show that symmetric and nonsymmetric versions of the finite BLT follow as
corollaries of the finite quantitative BLT (Theorem 1.7), as long as N is sufficiently
large.

Theorem 1.8 (Nonsymmetric Finite BLT) Let A,B > 0 and 1 < p, q < ∞ be
such that 1

p
+ 1
q
= 1. There exists a constant C > 0, depending only on A,B, p and

q such that the following holds. Let N ≥ 200
√
B/A. Then, for any b ∈ �d,l2 which

generates an A,B-Gabor Riesz basis for �d,l2 ,

C log(N) ≤ 1

Nl

∑

j∈I ld

∣∣∣∣
jk

N

∣∣∣∣
p

|b(j)|2 + 1

Nl

∑

j∈I ld

∣∣∣∣
jk

N

∣∣∣∣
q

|b(j)|2.

Remark 1 Theorem 1.8 gives a finite dimensional version of the nonsymmetric BLT
for parameters satisfying 1 < p, q < ∞. Thus, it is a finite dimensional analog of
part (i) of Theorem 1.1 in all dimensions. In Sect. 5 we extend this result to the case
where either p or q is ∞, thus giving a finite dimensional analog of part (ii) of
Theorem 1.1 for all dimensions. In the same section, a generalization of this result
is demonstrated for pairs (p, q) such that 1

p
+ 1
q
�= 1. (See Theorem 5.3.)
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Remark 2 It is readily checked that the p = q = 2 version of Theorem 1.8 is
equivalent to Theorem 1.6, so the proof of Theorem 1.8 gives an alternative proof
of Theorem 1.6 for N ≥ 200

√
B/A. In particular, the proof shows that the Finite

Quantitative BLT implies the finite symmetric (and nonsymmetric) BLT.

1.3 Applications of the Continuous Quantitative BLT

In Sect. 5, we also prove several results related to functions of continuous arguments.
We first state the simplest of these results, a generalization of Theorem 1.2 to
nonsymmetric weights.

Theorem 1.9 Let g ∈ L2(Rl ) and suppose that G(g) = G(g,Z2l ) is a Riesz basis
for L2(Rl ). For any 1 ≤ k ≤ ∞, the following must hold.

(i) If 1 < p <∞ and 1
p
+ 1
q
= 1, then either

∫

Rl

|xk|p|g(x)|2dx = ∞ or
∫

Rl

|ξk|q |̂g(ξ)|2dξ = ∞.

(ii) If g is compactly supported, then

∫

Rl

|ξk||̂g(ξ)|2dξ = ∞.

This part also holds with g and ĝ interchanged.

In addition we are able to show more concrete estimates on the growth of related
quantities, and we also may remove the assumption that 1

p
+ 1
q
= 1.

Theorem 1.10 Suppose 1 ≤ p, q < ∞ and let g ∈ L2(Rl ) be such that G(g) =
G(g,Z2l ) = {e2πin·xg(x−m)}(m,n)∈Z2l is a Riesz basis for L2(Rl ). Let τ = 1

p
+ 1
q
.

Then, there is a constant C depending only on the Riesz basis bounds of G(g) such
that for any 1 ≤ k ≤ l and any 2 ≤ T <∞, the following inequalities hold.

(i) If τ = 1
p
+ 1
q
< 1, then

C(1− 2τ−1)

(1− τ) T 1−τ ≤
∫

Rl
min(|xk |p, T )|g(x)|2dx +

∫

Rl
min(|ξk |q , T )|̂g(ξ)|2dξ.

(ii) If τ = 1
p
+ 1
q
= 1, then

C log(T ) ≤
∫

Rl

min(|xk|p, T )|g(x)|2dx +
∫

Rl

min(|ξk|q, T )|̂g(ξ)|2dξ.
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(iii) If τ = 1
p
+ 1
q
> 1, then

C

τ − 1
≤
∫

Rl

|xk|p|g(x)|2dx +
∫

Rl

|ξk|q |̂g(ξ)|2dξ.

When the bound 2 ≤ T < ∞ is replaced by 1 < γ ≤ T < ∞, the bound
C(1−2τ−1)
(1−τ) T 1−τ in part (i) can be replaced by C(1−γ τ−1)

(1−τ) T 1−τ . In Sect. 5 we extend
this theorem to the case where either p = ∞ or q = ∞.

The first and second inequalities in Theorem 1.10 quantify the growth of
‘localization’ quantities in terms of cutoff weights of the form min(|xk|p, T ). The
log term in the second inequality shows a connection between the continuous BLT
and its finite dimensional versions. The last inequality, on the other hand, shows
that generators of Gabor Riesz bases must satisfy a Heisenberg type uncertainty
principle for every 0 < p ≤ 2. A similar inequality is known to hold for arbitrary
L2(R) functions by a result of Cowling and Price [7]. However, for generators of
Gabor Riesz bases, we have explicit estimates on the dependence of the constant on
τ and the result here is stated for higher dimensions.

2 Preliminaries: The Zak Transform and Quasiperiodic
Functions

The Zak transform is an essential tool for studying lattice Gabor systems. The
discrete Zak transform Zd,l of b ∈ �d,l2 for (m,n) ∈ Z

2l
d is given by

Zd,l(b)(m,n) =
∑

j∈{0,...,N−1}l
b(m−N j)e2πi n·j

N =
∑

j∈NZ
l
d

b(m− j)e2πi n·j
d .

The following properties show that Zd,l(b) encodes basis properties of Gd,l(b),
while retaining information about ‘smoothness’ (see the remark following Proposi-
tion 2.1) of b and Fd,l(b). Note that Zd,l(b)(m,n) is defined for (m,n) ∈ Z

2l
d and

is d-periodic in each of its 2l variables. However, the Zak transform satisfies even
stronger periodicity conditions. In fact, Zd,l(b) is N-quasiperiodic on Z

2l
d , that is

Zd,l(b)(m+Nek,n) = e2πi
nk
N Zd,l(b)(m,n), (6)

Zd,l(b)(m,n+Nek) = Zd,l(b)(m,n).

Let SN = {0, . . . , N − 1}. Then, the quasi-periodicity conditions above show that
Zd,l(b) is completely determined by its values on S2l

N .
We will use the notation �2(S

2l
N ) to denote the set of sequencesW(m,n) defined

on S2l
N with norm given by
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‖W‖2
�2(S

2l
N )
= 1

N2l

∑

(m,n)∈S2l
N

|W(m,n)|2,

where here we keep the variables m and n separate due to the connection with the
Zak transform. The normalization is chosen so that ifW is a sampling of a function
h(x, y) on [0, 1]2l , then ‖W‖�2(S

2l
N )

approximates the L2([0, 1]2l ) norm of h.
The Zak transform has many other important properties, some of which we

collect in the next proposition. Arguments for these facts are standard and presented
in [1] and [14], for instance.

Proposition 2.1 Let b ∈ �d,l2 .

(i) Zd,l is a unitary mapping from �d,l2 onto �2(S
2l
N ).

(ii) A sequence b ∈ �d,l2 generates an A,B-Gabor Riesz basis for �d,l2 if and only
if Zd,l(b) satisfies

A ≤ |Zd,l(b)(m,n)|2 ≤ B, for (m,n) ∈ Z
2l
d .

(iii) Let b̂ = Fd,l(b). Then,

Zd,l (̂b)(m,n) = e2πi m·n
d Zd,l(b)(−n,m).

(iv) For a, b ∈ �d,l2 define (a ∗ b)(k) = 1
Nl

∑
j∈Zld a(k− j)b(j). Then,

Zd,l(a ∗ b)(m,n) = 1

Nl

∑

j∈Zld
b(j)Zd,l(a)(m− j,n) = (Zd,l(a) ∗1 b)(m,n),

where ∗1 denotes convolution of b with respect to the first set of variables of
Zd,l(a), m, keeping the second set, n, fixed.

Remark 3 We will be interested in the ‘smoothness’ of b and Zd,l(b) for b ∈ �d,l2 .
Since these are functions on discrete sets, smoothness is not well defined, but we
use the term in relation to the size of norms of certain difference operators defined
on �d,l2 and �2(S

2l
N ), which mimic norms of partial derivatives of differentiable

functions.

For 1 ≤ k ≤ l and any N -quasiperiodic function on Z
l
d , let Δk, Γk be defined as

follows:

ΔkW(m,n) = W(m+ ek,n)−W(m,n),
ΓkW(m,n) = W(m,n+ ek)−W(m,n).

For b ∈ �d,l2 define αk(b) and βk(b) by
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αk(b) = ‖NΔkb‖2
�
d,l
2
+ ‖NΔkFd,l(b)‖2

�
d,l
2
,

βk(b) =
1

N2l

∑

(m,n)∈S2l
N

|NΔkZd,l(b)(m,n)|2 + 1

N2l

∑

(m,n)∈S2l
N

|NΓkZd,l(b)(m,n)|2.

The following proposition shows that αk(b) and βk(b) are essentially equiva-
lently sized. Proposition 4.1 in [14] proves this for the case l = k = 1, and it is
readily checked that the proof carries over directly to the l > 1 setting.

Proposition 2.2 Let B > 0 and let b ∈ �d,l2 be such that |Zd,l(b)(m,n)|2 ≤ B for
all (m,n) ∈ Z

2l
d . Then, for all integers N ≥ 2 and any 1 ≤ k ≤ l, we have

1

2
βk(b)− 8π2B ≤ αk(b) ≤ 2βk(b)+ 8π2B.

We thus see that in order to bound αk(b) as in Theorem 1.6, it is sufficient to bound
βk(b). For b ∈ �d2 = �d,12 , let β(b) = β1(b), and let

βA,B(N) = inf{β(b)},

where the infimum is taken over all b ∈ �d2 such that b generates an A,B-Gabor
Riesz basis.

Theorem 2.1 (Theorem 4.2, [14]) There exist constants 0 < cAB ≤ CAB < ∞
such that for all N ≥ 2, we have

cAB log(N) ≤ βA,B(N) ≤ CAB log(N).

To prove the lower bound in this theorem (as is done in [14]), one may examine
the argument of the Zak transform of a sequence b ∈ �d2 which generates a basis
with Riesz basis bounds A and B over finite dimensional lattice-type structures
in the square {0, . . . , N}2. Due to the N -quasiperiodicity conditions satisfied by
Zd,l(b) this argument is forced to ‘jump’ at some step between neighboring points
along these lattice-type sets (See Lemma 3.1 and 3.4 in [14]). Due to the Riesz
basis assumption and part (iv) of Proposition 2.1, jumps in the argument of Zd,l(b)
correspond directly to jumps in Zd,l(b) (see Corollary 3.6 in [14]). By counting the
number of lattice-type sets which are disjoint, a logarithmic lower bound is given
for the number of jumps in Zd,l(b) corresponding to jumps in the argument, which
gives the lower bound in Theorem 2.1.

The proof of the upper bound involves an explicit construction of the argument
of a unimodular function,W , on S2

N . Since the Zak transform is a unitary, invertible
mapping between �d2 and �2(S

2
N), there is a corresponding b̃ ∈ �d2 so thatG(b̃) is an

orthonormal basis (which can be scaled to form a Riesz basis with bounds A and B
for any A and B) and such that b̃ satisfies Zd(b̃) = W . For this construction, β(b̃)
can be bounded directly to show the upper bound in the theorem.
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3 Proof of Theorem 1.6

Based on Proposition 2.2, to prove Theorem 1.6 it is sufficient to show that
Theorem 2.1 extends from �d2 to �d,l2 . We show this below, and in particular that
by restricting the Zak transform of a multi-variable sequence to the kth variable
in each component, we can directly use Theorem 2.1 to prove the multi-variable
version of the lower bound. Similarly, we show that by taking suitable products of
the constructed b̃ function mentioned above, we can also extend the logarithmic
upper bound to higher dimensions.

Let

βA,B,k(N, l) = inf{βk(b)},

where the infimum is over all b ∈ �d,l2 which generate an A,B-Gabor Riesz basis

for �d,l2 .

Theorem 3.1 For the same constants 0 < cAB ≤ CAB < ∞ as Theorem 2.1, for
all N ≥ 2, and for any 1 ≤ k ≤ l, we have

cAB log(N) ≤ βA,B,k(N, l) ≤ CAB log(N).

Proof For notational convenience, we show both the lower and upper bound with
k = 1, but a similar argument applies for any 1 ≤ k ≤ l.
Lower Bound Let b ∈ �d,l2 generate an A,B-Gabor Riesz basis for �d,l2 .

Let m = (m1,m′) and n = (n1,n′) for fixed (m′,n′) ∈ S2(l−1)
N and define

T (m1, n1) = Tm′,n′(m1, n1) = Zd,l(b)((m1,m′), (n1,n′)).

Then, T satisfies

T (m1 +N, n1) = Zd,l(b)(m+Ne1,n) = e2πi
n1
N T (m1, n1),

T (m1, n1 +N) = Zd,l(b)(m,n+Ne1) = T (m1, n1),

so T is N -quasiperiodic on Z
2
d (see Eq. 6). By the unitary property of the Zak

transform (Proposition 2.1), there exists a b1 ∈ �d2 so that T = Zd,1(b1), and since
A ≤ |T (m1, n1)|2 ≤ B for any (m1, n1) ∈ Z

2
d , the same property shows thatGd(b1)

is a Riesz basis for �d2 with bounds A and B. Thus, Theorem 2.1 shows that

CAB log(N) ≤
∑

(m1,n1)∈S2
N

|Δ1Tm′,n′(m1, n1)|2 +
∑

(m1,n1)∈S2
N

|Γ1Tm′,n′(m1, n1)|2.
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Since the choice of (m′,n′) ∈ S2(l−1)
N was arbitrary, this bound holds for any such

choice.
Thus, computing β1(b), we find

1

N2(l−1)

∑

(m′,n′)∈S2(l−1)
N

⎡

⎢⎣
∑

(m1,n1)∈S2
N

|ΔTm′,n′(m1, n1)|2 +
∑

(m1,n1)∈S2
N

|Γ Tm′,n′(m1, n1)|2
⎤

⎥⎦

≥ CAB log(N),

since the bound holds for each term inside the brackets, and β1(b) is simply an
average of these terms. Taking an infimum over all acceptable b ∈ �d,l2 proves the
lower bound.

Upper Bound To prove the upper bound, we adapt the construction used to prove
the one-dimensional upper bound in [14] to higher dimensions. The sequence used
in this construction builds on a continuous construction first given in [5]. Note that
it suffices to prove the result for orthonormal bases, as the result for Riesz bases
follows by scaling the constructed generator by the Riesz basis bounds.

In Section 4.3 of [14], it is shown that there is a constant C > 0 such that for any
N ≥ 2, there exists a b ∈ �d2 such that Gd(b) is an orthonormal basis for �d2 and

β(b) =
∑

(m,n)∈S2
N

∣∣ΔZd,1(b)(m, n)
∣∣2 +

∑

(m,n)∈S2
N

∣∣Γ Zd,1(b)(m, n)
∣∣2 ≤ C log(N).

For j ∈ Z
l
d , let bl(j) = b(j1)b(j2) · · · b(jl). Then,

Zd,l(bl)(m,n) = Zd,1(b)(m1, n1) · · ·Zd,1(b)(ml, nl).

Since Gd(b) is an orthonormal basis for �d2 , Zd,l(bl) is unimodular, and therefore,

Gd,l(bl) is an orthonormal basis for �d,l2 by Proposition 2.1. We have, β1(bl) is
equal to

1

N2(l−1)

∑

(m′,n′)∈Z2(l−1)
N

⎡

⎢⎣
∑

(m1,n1)∈S2
N

∣∣ΔZd,1(b)(m1, n1)
∣∣2 +

∑

(m1,n1)∈S2
N

∣∣Γ Zd,1(b)(m1, n1)
∣∣2
⎤

⎥⎦

≤ C log(N).

Theorem 1.6 follows by combining Theorem 3.1 with Proposition 2.2.
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4 Proof of Theorem 1.7

In establishing a Finite Quantitative BLT for several variables, we follow a similar
argument used to prove the one variable version (from [14]), but there are some
necessary updates to certain parts of the proof. We include the details here for
completeness.

We start with a straightforward bound on the ‘smoothness’ of Zd,l(b ∗ φ). This
observation is analogous to Lemma 2.6 of [14]. Let ‖φ‖

�
d,l
1
= 1
Nl

∑
j∈Zld |φ(j)|, and

for a, b ∈ �d,l2 , recall that (a ∗ b)(k) = 1
Nl

∑
j∈Zld a(k− j)b(j).

Lemma 4.1 Suppose b, φ ∈ �d,l2 are such that |Zd,l(b)|2 ≤ B everywhere. Then,
for any integer t ,

|Zd,l(b ∗ φ)(m+ tek,n)− Zd,l(b ∗ φ)(m,n)| ≤
√
B|t |
N

‖NΔkφ‖�d,l1
.

Proof From Proposition 2.1, we have

Zd,l(b ∗ φ)(m,n) = 1

Nl

∑

j∈Zld
φ(j)Zd,l(b)(m− j,n) = Zd,l(b) ∗1 φ(m,n).

Therefore, we have

|Zd,l(b ∗ φ)(m+ tek,n)− Zd,l(b ∗ φ)(m,n)|

≤
t−1∑

s=0

|Zd,l(b ∗ φ)(m+ (s + 1)ek,n)− Zd,l(b ∗ φ)(m+ sek,n)|

=
t−1∑

s=0

∣∣∣∣∣∣∣

1

Nl

∑

j∈Zld
Zd,l(b)(j,n)[φ(m+ (s + 1)ek − j)− φ(m+ sek − j)]

∣∣∣∣∣∣∣

≤
t−1∑

s=0

√
B

Nl

∑

j∈Zld
|Δkφ(m+ sek − j)| =

√
B

N
t‖NΔkφ‖�d,l1

.

��
Next we extend the following Lemma 5.2 of [14] to higher dimensions. The

adjustments to this lemma for the higher dimensional setting are minimal, however
we state the one-dimensional and multi-variable versions separately for comparison.

Lemma 4.2 (Lemma 5.2, [14]) Let A,B > 0 and N ≥ 200
√
B/A. There exist

positive constants δ = δ(A) and C = C(A,B) such that the following holds (with
d = N2). Let
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(i) Q,R ∈ Z such that 1 ≤ Q,R ≤ (N/16) · √A/B,
(ii) φ,ψ ∈ �d2 such that

∑
n |Δφ(n)| ≤ 10R and

∑
n |Δψ(n)| ≤ 10Q,

(iii) b ∈ �d2 such that A ≤ |Zd(b)|2 ≤ B.
Then, there exists a set S ⊂ ([0, N − 1] ∩ Z)2 of size |S| ≥ CN2/QR such that all
(u, v) ∈ S satisfy either

|Zd(b)(u, v)− Zd(b ∗ φ)(u, v)| ≥ δ, or (7)

|Zd(Fdb)(u, v)− Zd((Fdb) ∗ ψ)(u, v)| ≥ δ. (8)

Lemma 4.3 Let A,B > 0, 1 ≤ k ≤ l, and N ≥ 200
√
B/A. There exist positive

constants δ = δ(A) and C = C(A,B), such that the following holds. Let

(i) Q,R ∈ Z be such that 1 ≤ Q,R ≤ N
16

√
A
B

(ii) φ,ψ ∈ �d,l2 be such that ‖NΔkφ‖�d,l1
≤ 10R and ‖NΔkψ‖�d,l1

≤ 10Q

(iii) b ∈ �d,l2 be such that A ≤ |Zd,l(b)|2 ≤ B.
Then, there exists a set S ⊂ ([0, N − 1] ∩Z)2l of size |S| ≥ CN2l/QR such that all
(u, v) ∈ S satisfy either

|Zd,l(b)(u, v)− Zd,l(b ∗ φ)(u, v)| ≥ δ, or (9)

|Zd,l(Fd,lb)(u, v)− Zd,l((Fd,lb) ∗ ψ)(u, v)| ≥ δ. (10)

Proof Without loss of generality, we prove this for k = 1.
As in Lemma 5.2 of [14], let δ1 = 2

√
A sin(π( 1

4 − 1
200 )). Also, choose K and L

to be the smallest integers satisfying

200
√
BR

9δ1
≤ K ≤ N and

√
B

δ1
max

{
200Q

9
, 80π

}
≤ L ≤ N.

For s, t ∈ Z, let

σ s =
[
sN

K

]
, and ωt =

[
tN

L

]
,

and let Σ = infs{σ s+1 − σ s} ≥
[
N
K

] ≥ N
K

, Ω = inft {ωt+1 − ωt } ≥ N
L

. Then, we
have

ΣΩ ≥ C1
N2

QR
,

where C1 can be chosen to be
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C1 =
[
(
200
√
B

9δ1
+ 1)(

√
B

δ1
max(

200

9
, 80π)+ 1)

]−1

.

We recall the following definition from [14]. For (u, v) ∈ ([0,Σ − 1] ∩ Z) ×
([0,Ω − 1] ∩ Z), let

Lat(u, v) = {(u+ σ s, v + ωt) : (s, t) ∈ ([0,K − 1] ∩ Z)× ([0, L− 1] ∩ Z)},

and

Lat∗(u, v) = {(N − v−ωt , u+ σ s) : (s, t) ∈ ([0,K − 1] ∩Z)× ([0, L− 1] ∩Z)}.

Note that Lat(u, v) and Lat(u′, v′) are disjoint for distinct (u, v) and (u′, v′), and
similarly for Lat∗(u, v). However, it is possible that Lat(u, v)∩Lat∗(u′, v′) �= ∅ for
some (u, v) and (u′, v′).

Now similarly, for any (m′,n′) ∈ ([0, N − 1] ∩ Z)2(l−1), let

Lat(m′,n′)(u, v) = {((m1,m′), (n1,n′)) : (m1, n1) ∈ Lat(u, v)},

and

Lat∗(m′,n′)(u, v) = {((n1, N − n′), (m1,m′)) : (n1,m1) ∈ Lat∗(u, v)}.

Here, by N − n′ we mean (N − n′1, N − n′2, . . . , N − n′l−1). We have that
Lat(m′,n′)(u, v) ∩ Lat(m′′,n′′)(u′, v′) = ∅ unless it holds that ((u,m′), (v,n′)) =
((u′,m′′), (v′,n′′)), and similar properties for Lat∗

(m′,n′)(u, v).

Now, fix (m′,n′) ∈ ([0, N − 1] ∩ Z)2(l−1), and consider

T (m1, n1) = Tm′,n′(m1, n1) = Zd,l(b)((m1,m′), (n1,n′)),

for (m1, n1) ∈ Z
2
d . Note that T is N -quasiperiodic on Z

2
d , and satisfies A ≤ |T |2 ≤

B.
For each (u, v) ∈ ([0,Σ − 1] ∩ Z) × ([0,Ω − 1] ∩ Z), Corollary 3.6 of [14]

guarantees at least one point (s, t) ∈ ([0,K − 1] ∩ Z) × ([0, L − 1] ∩ Z) so that
either

|T (u+ σ s+1, v + ωt)− T (u+ σ s, v + ωt)| ≥ δ1, or (11)

|T (u+ σ s, v + ωt+1)− T (u+ σ s, v + ωt)| ≥ δ1. (12)

We now make a claim which will furnish the last part of the proof of the lemma.
��

Claim For u, v, σ s , ωt , m′ and n′ as above,
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(i) If (11) is satisfied, then there exists (a,b) ∈ Lat(m′,n′)(u, v) so that (9) is
satisfied for δ = δ1

20 .
(ii) If (12) is satisfied, then there exists (a,b) ∈ Lat∗

(m′,n′)(u, v) so that (10) is

satisfied for δ = δ1
40

Before proving this claim, we show how to complete the proof of the lemma.

For a fixed (m′,n′) there are ΣΩ ≥ C1
N2

QR
distinct choices of (u, v) to consider

and each of them either falls in part (i) or (ii) of the claim. Let S1
(m′,n′) be the set of

(u, v) points which fall into category (i), and similarly let S2
(m′,n′) be the set of (u, v)

points which fall into category (ii). Then, for either i = 1, 2, we must have

|Si(m′,n′)| ≥
C1N

2

2QR
. (13)

Now, there are N2(l−2) possible choices of (m′,n′). Let S1 be the set of all
(m′,n′) such that (13) is satisfies with i = 1, and let S2 be the set of all (m′,n′) such
that (13) is satisfied with i = 2. So at least one of S1 or S2 must contain N2(l−2)/2
elements.

In the case that S1 contains this many elements (the S2 case is nearly identical and
left to the reader), since Lat(m′,n′)(u, v) are disjoint for distinct ((u,m′), (v,n′)), we

find at least C1N
2l

4QR = CN2l

QR
distinct points all satisfy (9) if i = 1. The lemma is then

proved conditioning on the claim above. We then establish finally the two part claim.

Proof of Claim For both parts we use properties of the Zak transform detailed in
Proposition 2.1. First we show part (i). Let H(u, v) = Zd,l(b ∗ φ)((u,m′), (v,n′)).
Note that Lemma 4.1 and the assumptions on R and ‖NΔ1φ‖�d,l1

imply that for any

integer t satisfying t ≤ 2N
K

,

|H(u+ t, v)−H(u, v)| ≤ 2
√
B
K
‖NΔ1φ‖�d,l1

≤ 20
√
BR
K

≤ 9δ1
10 . (14)

So, if (11) is satisfied, using (14), we have

δ1 ≤ |T (u+ σ s+1, v + ωt)− T (u+ σ s, v + ωt)|
≤ |T (u+ σ s+1, v + ωt)−H(u+ σ s+1, v + ωt)|

+9δ1

10
+ |T (u+ σ s, v + ωt)−H(u+ σ s, v + ωt)|.

Upon rearranging terms, we find

δ1
10 ≤ |T (u+ σ s+1, v + ωt)

−H(u+ σ s+1, v + ωt)| + |T (u+ σ s, v + ωt)−H(u+ σ s, v + ωt)|,
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which shows that (9) is satisfied for δ′ = δ1
20 , and for either ((u + σ s+1,m′), (v +

ωt ,n′)) or ((u+ σ s,m′), (v+ωt ,n′)). If (u+ σ s+1, v+ωt) is not in Lat(u, v), by
the N-quasiperiodicity of T , we may find another point in Lat(u, v) which satisfies
the same bound.

Now we prove part (ii). Letting b̂ = Fd,l(b), we have,

δ1 ≤ |T (u+ σ s, v + ωt+1)− T (u+ σ s, v + ωt)|
= |Zd,l(b)((u+ σ s,m′), (v + ωt+1,n′))− Zd,l(b)((u+ σ s,m′), (v + ωt ,n′))|
= |Zd,l(b̂)((−v − ωt+1,−n′), (u+ σ s,m′))

−e−2πi(ωt+1−ωt )(u+σ s)/dZd,l(b̂)((−v − ωt ,−n′), (u+ σ s,m′))|
= |Zd,l(b̂)((N − v − ωt+1, N − n′), (u+ σ s,m′))

−e−2πi(ωt+1−ωt )(u+σ s)/dZd,l(b̂)((N − v − ωt ,N − n′), (u+ σ s,m′))|,

where we have used that Zd,l(b)(m,n) = e2πim·n/dZd,l (̂b)(−n,m) in the second
step, and for the last step we have used N -quasiperiodicity.

Let T̃ (v, u) = Zd,l(b̂)((v,N−n′), (u,m′)), and H̃ (v, u) = Zd,l(b̂∗ψ)((v,N−
n′), (u,m′)). Then,

δ1 ≤ |T̃ (N − v − ωt+1, u+ σ s)− e−2πi(ωt+1−ωt )(u+σ s)/d T̃ (N − v − ωt , u+ σ s)|
≤ |T̃ (N − v − ωt+1, u+ σ s)− T̃ (N − v − ωt , u+ σ s)| + δ1

20
.

Combining these, we see that

19

20
δ1 ≤ |T̃ (N − v − ωt+1, u+ σ s)− T̃ (N − v − ωt , u+ σ s)|.

Arguing as in the first case above, and replacing H by H̃ and T by T̃ , we find
that either ((N − v − ωt+1, N − n′), (u,m′)), or ((N − v − ωt ,N − n′), (u,m′))
satisfy (10), with δ = δ1

40 . Again, using quasi-periodicity, we can guarantee that
there is a point in Lat∗

(m′,n′)(u, v) satisfying (10). ��
Finally, we follow the construction of [14] to create the functions φ and ψ

appearing in the previous lemma (Lemma 4.3) which in turn are used to prove
Theorem 1.7. Let ρ : R→ R be the inverse Fourier transform of

ρ̂(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, |ξ | ≤ 1/2

2(1− ξsgn(ξ)), 1/2 ≤ |ξ | ≤ 1

0, |ξ | ≥ 1

.

For f ∈ L2(R) satisfying supt∈R |t2f (t)| <∞ and supξ∈R |ξ2f̂ (t)| <∞, let
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PNf (t) =
∞∑

k=−∞
f (t + kN)

and for an N -periodic continuous function h, let

SNh = {h(j/N)}d−1
j=0.

Let ρR(t) = Rρ(Rt). Fix 1 ≤ k ≤ l, and for j ∈ I ld define the vector j′ =
(j1, . . . , jk−1, jk+1, . . . , jl) ∈ I l−1

d , and let

φR,k(j) = Nl−1δj′,0 (SNPNρR(jk)) .

Now φR,k(j) is equal to (SNPNρR(jk)) when ji = 0 for each i �= k, and is zero
otherwise.

Lemma 4.4 Let φR,k be as above for a positive integer R. Then,

‖NΔkφR,k‖�d,l1
≤ 10R.

Proof We have

‖NΔkφR,k‖�d,l1
= 1

Nl

∑

j∈I ld
N |ΔkφR,k(j)| =

∑

jk∈Id
|ΔSNPNρR(jk)|.

Lemma 2.10 and Lemma 5.1 of [14] show that the right hand side is bounded by
10R. ��

We now have sufficient tools to prove the Finite Quantitative BLT, Theorem 1.7.

Proof (Theorem 1.7) For simplicity we show the result for k = 1. Let R and Q be
integers such that 1 ≤ R,Q ≤ (N/16)

√
A/B. Let φ = φR,1 and ψ = φQ,1, and

note that Lemma 4.1 shows that

‖NΔ1φ‖�d,l1
≤ 10R, and ‖NΔ1ψ‖�d,l1

≤ 10Q.

Proposition 2.8 of [14], and the fact that Fd(Nδj,0)(k) = 1 for all k ∈ Id , shows
that

Fd,l(φ)(k) = Fd(SNPNρR)(k1)

= (SNPNF(ρR))(k1) = (SNPNρ̂(·/R))(k1), (15)

and since R < N/2, then 0 ≤ φ̂ = Fd,l(φ) ≤ 1. Also, φ̂(k) = 1 for any k which
satisfies k1 ∈ [−RN/2, RN/2], independent of the values of k2, . . . , kl , that is, for
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any k ∈ SNR,1. The same holds for ψ̂ = Fd,l(ψ) with Q replacing R. Applying
Lemma 4.3, we find a constant C such that

CN2l

QR
≤

∑

(m,n)∈�2(S
2l
N )

|Zd,l(b)(m,n)− Zd,l(b ∗ φ)(m,n)|2

+
∑

(m,n)∈�2(S
2l
N )

|Zd,l (̂b)(m,n)− Zd,l (̂b ∗ ψ)(m,n)|2,

where here we have let b̂ = Fd,l(b). Using that Zd,l and Fd,l are both isometries
and the properties of φ and ψ listed above, we have

C

QR
≤ ‖Zd,l(b)− Zd,l(b ∗ φ)‖2

�2(S
2l
N )
+ ‖Zd,l (̂b)− Zd,l (̂b ∗ ψ)‖2

�2(S
2l
N )

= ‖b − b ∗ φ‖2
�
d,l
2
+ ‖b̂ − b̂ ∗ ψ‖2

�
d,l
2

= ‖b̂(1− φ̂)‖2
�
d,l
2
+ ‖b(1− ψ̂)‖2

�
d,l
2

≤ 1

Nl

∑

|j1|≥NR2
|Fdb(j)|2 + 1

Nl

∑

|j1|≥NQ2
|b(j)|2.

��

5 Nonsymmetric Finite BLT and Applications of the
Quantitative BLTs

In this penultimate section, we prove the nonsymmetric finite BLT, Theorem 1.8,
and the uncertainty principles of Theorem 1.10. We show each of these follows from
a version of the Quantitative BLT, however, the details of the proof of Theorem 1.8
are more difficult due to subtleties from discreteness. For this reason, we first
prove Theorem 1.10 which shows the central idea of both proofs without the added
technical difficulty.

First, we state the higher dimensional quantitative BLT of [15]. For notational
simplicity, we write {|xk| ≥ s} to mean {x ∈ R

l : |xk| ≥ s} in situations where the
dependence on l is clear.

Theorem 5.1 (Theorem 1, [15]) Let g ∈ L2(Rl ) be such that the Gabor system
generated by g

G(g) = {e2πin·xg(x −m)}(m,n)∈Z2l
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is a Riesz basis for L2(Rl ). Let R,Q ≥ 1 be real numbers. Then, there is a constant
C which only depends on the Riesz basis bounds ofG(g) such that for any 1 ≤ k ≤ l

∫

|xk |≥R
|g(x)|2dx +

∫

|ξk |≥Q
|̂g(ξ)|2dξ ≥ C

RQ
. (16)

Remark 4 In [15], the conclusion of this theorem is stated where the integrals
in (16) are taken over Rl \ R and R

l \ Q, respectively, where Q and R are finite
volume rectangles in R

d . However, a straightforward limiting argument shows that
the result holds after removing ‘infinite volume’ rectangles, as in the statement
above.

Proof (Theorem 1.10) We will prove this for k = 1 without loss of generality.
Let 1 ≤ S < ∞, and choose R = S1/p and Q = S1/q . Note 1 ≤ R,Q < ∞

for any value of S. Theorem 5.1 then shows that for C only depending on the Riesz
basis bounds of G(f ),

C

Sτ
= C

S
1
p
+ 1
q

≤
∫

|x1|≥S1/p
|g(x)|2dx +

∫

|ξ1|≥S1/q
|̂g(ξ)|2dξ. (17)

In each case, the result follows by integrating both sides of (17) over a particular set
of S values, and then using Tonelli’s Theorem to interchange the order of integration.

Case 1: τ = 1
p
+ 1
q
< 1. We have,

C
(1− 2τ−1)

1− τ T 1−τ = C
∫ T

1
S−τ dS

≤
∫

Rl−1

∫ T

0

∫

|x1|≥S1/p
|g(x1, x

′)|2dx1dSdx
′

+
∫

Rl−1

∫ T

0

∫

|ξ1|≥S1/q
|̂g(ξ1, ξ

′)|2dξ1dSdξ
′

≤
∫

Rl

∫ min(|x1|p,T )

0
|g(x)|2dSdx

+
∫

Rl

∫ min(|ξ1|q ,T )

0
|̂g(ξ)|2dSdξ

=
∫

Rl

min(|x1|p, T )|g(x)|2dx+
∫

Rl

min(|ξ1|q, T )|̂g(ξ)|2dξ.

Case 2: τ = 1
p
+ 1
q
= 1. Similarly, we have

C log T = C
∫ T

1
S−1dS
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≤
∫

Rl−1

∫ T

0

∫

|x1|≥S1/p

|g(x1, x
′)|2dx1dSdx

′

+
∫

Rl−1

∫ T

0

∫

|ξ1|≥S1/q

|̂g(ξ1, ξ
′)|2dξ1dSdξ

′

≤
∫

Rl

min(|x1|p, T )|g(x)|2dx +
∫

Rl

min(|ξ1|q, T )|̂g(ξ)|2dξ.

Case 3: τ = 1
p
+ 1
q
> 1. Finally, in this case

C

τ − 1
= C

∫ ∞

1
S−τ dS

≤
∫

Rl−1

∫ ∞

0

∫

|x1|≥S1/p

|g(x1, x
′)|2dx1dSdx

′

+
∫

Rl−1

∫ ∞

0

∫

|ξ1|≥S1/q

|̂g(ξ1, ξ
′)|2dξ1dSdξ

′

=
∫

Rl

|x1|p|g(x)|2dx +
∫

Rl

|ξ1|q |̂g(ξ)|2dξ.
��

The following result generalizes part (ii) of Theorem 1.1.

Theorem 5.2 Suppose 1 ≤ p < ∞, and g ∈ L2(Rl ) is such that G(g) =
{e2πin·xg(x − m)}(m,n)∈Z2l is a Riesz basis for L2(Rl ) and g is supported in
(−M,M)l . Then, there exists a constantC depending only on the Riesz basis bounds
ofG(g) such that for any 1 ≤ k ≤ 1 and any 2 ≤ T ≤ ∞ each of the below hold.

(i) If p > 1, then

C(1− 21/p−1)

M(1− 1/p)
≤
∫

Rl

min(|ξk|p, T )|̂g(ξ)|2dξ.

(ii) If p = 1, then

C log(T )

M
≤
∫

Rl

min(|ξk|, T )|̂g(ξ)|2dξ.

(iii) If p < 1, then

C

M(1/p − 1)
≤
∫

Rl

|ξk|p, |̂g(ξ)|2dξ.
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This result also holds when g and ĝ are interchanged.

The proof is nearly identical to that of Theorem 1.10, after noticing that by applying
the quantitative BLT with R = M , the integral related to |g(x)|2 is zero due to
the support assumption. Note that letting T → ∞ in part (ii) gives part (ii) of
Theorem 1.9.

Finally, we focus on the finite nonsymmetric BLT. For 1 ≤ p, q < ∞ and
b ∈ �d,l2 , let

α
p,q
k (b) = 1

Nl

∑

j∈Zld

∣∣∣∣
jk

N

∣∣∣∣
p

|b(j)|2 + 1

Nl

∑

j∈Zld

∣∣∣∣
jk

N

∣∣∣∣
q

|Fd,lb(j)|2.

To give a finite dimensional analog of part (ii) of Theorem 1.1, it will be convenient
to define αp,∞k (b) and α∞,qk (b) as

α
p,∞
k (b) = 1

Nl

∑

j∈Zld

∣∣∣∣
jk

N

∣∣∣∣
p

|b(j)|2, α∞,qk (b) = 1

Nl

∑

j∈Zld

∣∣∣∣
jk

N

∣∣∣∣
q

|Fd,lb(j)|2.

Theorem 5.3 Let A,B > 0 and 1 ≤ p, q < ∞ and let τ = 1
p
+ 1
q
. Assume

b ∈ �d,l2 generates an A,B-Gabor Riesz basis for �d,l2 . There exists a constant
C > 0, depending only on A,B, p and q such that the following holds. Let N ≥
200
√
B/A.

(i) If τ = 1
p
+ 1
q
< 1,

C
N1−τ

1− τ ≤ α
p,q
k (b).

(ii) If τ = 1
p
+ 1
q
= 1,

C log(N) ≤ αp,qk (b.)

(iii) If τ = 1
p
+ 1
q
> 1,

C
1− (200/16)1−τ

τ − 1
≤ αp,qk (b).

Also, if Fd,l(b) is supported in the set (−γ NN/2, γ NN/2) ∩ Z where γN =
�(N/16)

√
A/B�, then parts (i), (ii), and (iii) hold with τ = 1

p
and αp,q(b) replaced

by αp,∞(b). Similarly, if b is supported in the set (−γ NN/2, γ NN/2) ∩ Z then
parts (i), (ii), and (iii) hold with τ = 1

q
and αp,q(b) replaced by α∞,q (b).
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We start with a lemma giving a bound on a typical sum arising in the proof which
follows. Similar to above, {b > |jk| ≥ a}will be used to denote {j ∈ I ld : b > |jk| ≥
a}.
Lemma 5.1 Let 1 ≤ ν < ∞, N > 200ν, c = 1/(16ν), and γN = �cN�. If
0 < α ≤ 1, then for any b ∈ �d,l2 , we have

γN∑

S=1

∑

|jk |≥NSα/2
|b(j)|2 ≤ 21/α

∑

j∈Zd

∣∣∣∣
jk

N

∣∣∣∣
1/α

|b(j)|2,

where Cα only depends on α.

Note, we will apply this lemma with ν = √
B/A where A and B are Riesz basis

bounds of Gd,l(b) for some b ∈ �d,l2 . However, this lemma holds regardless of

whether Gd,l(b) is basis for �d,l2 .

Proof Rearranging terms, we have

γN∑

S=1

∑

|jk |≥NSα/2
|b(j)|2 =

γN−1∑

m=1

m
∑

N(m+1)α
2 >|jk |≥Nmα2

|b(j)|2 + γN
∑

|jk |≥N ·γ
α
N

2

|b(j)|2.(18)

Note that for some m, if jk satisfies |jk| ≥ Nmα

2 , then m ≤ 21/α
∣∣∣ jkN
∣∣∣
1/α

. Then,

from (18), we find

γN∑

S=1

∑

|jk |≥NSα/2
|b(j)|2 ≤ 21/α

γN−1∑

m=1

∑

N(m+1)α
2 >|jk |≥Nmα2

∣∣∣∣
jk

N

∣∣∣∣
1/α

|b(j)|2

+ 21/α
∑

|jk |≥Nγ
α
N

2

∣∣∣∣
jk

N

∣∣∣∣
1/α

|b(j)|2

≤ 21/α
∑

j∈I ld

∣∣∣∣
jk

N

∣∣∣∣
1/α

|b(j)|2.

��
Proof (Theorem 5.3) We prove the result for k = 1. We treat the case where p and
q are both finite and the case where one of these is infinite separately. Below, we
take τ = 1

p
+ 1
q

.

Case 1: 1 ≤ p, q < ∞. Let S be an integer satisfying 1 ≤ S ≤ γN where
γN = �(N/16)

√
A/B�, and R = �S1/p	,Q = �S1/q	 if 1 < p, q <∞, R = S

if p = 1, and Q = S if q = 1. Note that these choices force 1 ≤ R,Q ≤ γN .
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Then, for a constant C only depending on A and B, Theorem 1.7 gives

C/4

Sτ
≤ C

RQ
≤ 1

Nl

∑

|jk |≥NS1/p
2

|b(j)|2 + 1

Nl

∑

|jk |≥NS1/q
2

|Fd,lb(j)|2.

Summing over the values of S in {1, . . . , γ N } and applying Lemma 5.1 with
τ = √B/A, to find

C

4

γN∑

S=1

S−τ ≤ 1

Nl

γN∑

S=1

∑

|jk |≥NS1/p
2

|b(j)|2+ 1

Nl

γN∑

S=1

∑

|jk |≥NS1/q
2

|Fd,lb(j)|2≤C′αp.qk (b)

where C′ is a constant only depending on p and q. Updating the constant C, (it
now depends on A, B, p, q)

C

γN∑

S=1

S−τ ≤ α
p,q
k (b,N, l).

The proof of Case 1 follows by noting that

γN∑

S=1

S−τ ≥

⎧
⎪⎪⎨

⎪⎪⎩

Cτ,A,B
N1−τ
1−τ 0 < τ < 1

Cτ,A,B log(N) τ = 1
(1−(200/16)1−τ )

1−τ τ > 1

, (19)

where the constants Cτ,A,B depend only on τ , A, and B.
Case 2: One of p or q is ∞. We can assume without loss of generality that
q = ∞ and 1 ≤ p < ∞. With this in mind, assume b generates an A,B-
Gabor Riesz basis for �d,l2 , and further suppose Fd,l(b) is supported in the set
(−γNN/2, γ NN/2) ∩ Z. Then, Theorem 1.7 applied withQ = γN , gives

C

RγN
≤ 1

Nl

∑

|jk |≥NR2
|b(j)|2,

where the second sum does not appear due to the support condition on Fd,l(b).
As in part (i), let 1 ≤ S ≤ γN and R = �S1/α	 if 1 < p < ∞ and R = S if
p = 1. Summing over values of S, and applying Lemma 5.1 we find

C

2γ N

γN∑

S=1

S−τ ≤ 1

Nl

γN∑

S=1

∑

|jk |≥NS1/p
2

|b(j)|2 ≤ 2pαp,∞k (b),
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and the result follows by combining the constants and another application of
Eq. (19). ��

6 Further Questions

Upon investigation, similar arguments applied in the one-dimensional Finite BLT
apply for several variable analogs. It is interesting to consider the question of
whether there are sequences which have the ‘best’ localization properties, those for
which the αk norm is minimized over the set of allA,B-Gabor Riesz bases. There is
a conjecture [11] of Lammers and Stampe which addresses this question and is still
open to the authors’ knowledge. Also of interest is whether uncertainty principles
for different continuous basis systems (e.g. [4]) may be discretized to give similar
finite dimensional results.

Another remaining question is related to Theorem 1.9. In [10], a more general
version of Theorem 1.2 was shown to hold when G(g,Z2l ) is replaced by G(g, S)
for any symplectic lattice S ⊂ R

2l . It is not clear to the authors whether Theorem 1.9
also holds in this setting.
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Quasi-Interpolant Operators and the
Solution of Fractional Differential
Problems

Enza Pellegrino, Laura Pezza, and Francesca Pitolli

Abstract Nowadays, fractional differential equations are a well established tool
to model phenomena from the real world. Since the analytical solution is rarely
available, there is a great effort in constructing efficient numerical methods for their
solution. In this paper we are interested in solving boundary value problems having
space derivative of fractional order. To this end, we present a collocation method
in which the solution of the fractional problem is approximated by a spline quasi-
interpolant operator. This allows us to construct the numerical solution in an easy
way. We show through some numerical tests that the proposed method is efficient
and accurate.

Keywords Fractional differential problem · B-spline · Quasi-interpolant ·
Collocation method

1 Introduction

In recent years fractional differential equations are becoming a powerful tool to
describe real-world phenomena where nonlocality is a key ingredient. Starting from
the fundamental paper [3] by Caputo, where the fractional derivative was used for
the first time to describe dissipation phenomena in Earth free modes, the literature
on fractional models has exploded and now fractional differential equations are used
in several fields, like continuum mechanics, signal processing, biophysics (see, [11,
17, 29, 32] and references therein). The Caputo derivative is especially suitable to
describe real phenomena since in many ways it behaves like the usual derivative
of integer order. In particular, the Caputo derivative of constant functions is zero,

E. Pellegrino
Università di L’Aquila, L’Aquila, Italy
e-mail: enza.pellegrino@univaq.it

L. Pezza · F. Pitolli (�)
Università di Roma “La Sapienza”, Roma, Italy
e-mail: laura.pezza@uniroma1.it; francesca.pitolli@uniroma1.it

© Springer Nature Switzerland AG 2021
G. E. Fasshauer et al. (eds.), Approximation Theory XVI, Springer Proceedings in
Mathematics & Statistics 336, https://doi.org/10.1007/978-3-030-57464-2_11

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57464-2_11&domain=pdf
mailto:enza.pellegrino@univaq.it
mailto:laura.pezza@uniroma1.it
mailto:francesca.pitolli@uniroma1.it
https://doi.org/10.1007/978-3-030-57464-2_11


208 E. Pellegrino et al.

which is not true for the Riemann-Liouville derivative [26]. Moreover, initial or
boundary conditions can be easily applied [7]. For details on fractional calculus see,
for instance [7, 18, 26, 29].

Since the analytical solution of fractional differential equations can be rarely
obtained explicitly, to solve these kinds of problems numerical methods are manda-
tory. There is a huge literature on numerical methods for fractional differential
problems (see, [2, 14, 15, 24] and references therein). A crucial point to construct
efficient methods is their ability to approximate the nonlocal behavior of the
fractional derivative. In this respect, collocation methods that use information of the
approximating function in all the discretization interval have received great attention
in recent years [12, 19, 21, 22, 25].

In this paper, we present a collocation method based on spline quasi-interpolant
operators suitable to solve boundary value differential problems having fractional
derivative in space. In particular, we are interested in solving linear boundary value
problems of type

⎧
⎨

⎩

D
γ
x y(x)+ f (x) y(x) = g(x) , 0 < x < L ,

ρr0 y(0)+ ρr1 y′(0)+ ζ r0 y(L)+ ζ r1 y′(L) = cr , 1 ≤ r ≤ �γ 	 ,
(1)

where γ ∈ (�γ �, �γ 	) is a given real number, f and g are continuous given
functions, and ρr0, ρr1, ζ r0, ζ r1, cr are given parameters. Here, we assume L to
be a positive integer. Moreover, we assume the boundary conditions are linearly
independent so that the differential problem has a unique solution [7].

The derivative appearing in the differential problem (1) should be intended in the
Caputo sense. For a sufficiently smooth function the Caputo fractional derivative is
defined as

D
γ
x y(x) := 1

Γ (�γ 	 − γ )
∫ x

0

y(�γ 	)(ξ)
(x − ξ)γ−�γ 	+1 dξ , (2)

where Γ is the Euler gamma function

Γ (γ ) :=
∫ ∞

0
ξγ−1 e−ξ dξ .

In the method we present in this paper we approximate the solution to the differential
problem (1) by a spline quasi-interpolant. Polynomial spline quasi-interpolants are
linear operators that are represented as a linear combination of spline basis functions
whose coefficients are chosen in order to achieve some special properties, like shape
preserving properties or good approximation order [5, 13, 16, 28]. Thus, quasi-
interpolants have a greater flexibility with respect to interpolation with the further
advantage that they are easy to construct. We show that the proposed method is
accurate and efficient since the fractional derivative of the approximating function
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can be evaluated explicitly. As a consequence, the nonlocal behavior of the fractional
derivative can be easily taken into account.

The paper is organized as follows. The main properties of the B-spline basis we
use to construct the approximating function are described in Sect. 2 while Sect. 3 is
devoted to its fractional derivative. In Sect. 4 we collect the main properties of the
Schoenberg–Bernstein operator we use to approximate the solution of Eq. (1). The
numerical method we propose is described in Sect. 5 while some numerical results
are shown in Sect. 6. Finally, some conclusions are drawn in Sect. 7.

2 The Cardinal B-splines

The cardinal B-splines are piecewise polynomials with breakpoints at the integers
[4, 31]. They can be defined as

Bn(x) := 1

n! Δ
n+1xn+, n ≥ 0 , (3)

where

Δn f (x) :=
n∑

�=0

(−1)�
(
n

�

)
f (x − �) , n ∈ N , (4)

is the backward finite difference operator and xn+ :=
(

max(0, x)
)n is the truncated

power function.
The integer translates {Bn(x − �), � ∈ Z} form a basis for the spline space of

degree n on the whole line. A basis for the finite interval [0, L], L ≥ n+ 1, can be
obtained by restriction, i.e.,

Bn(x) = {Bn(x − �),−n ≤ � ≤ L− 1} , x ∈ [0, L] . (5)

We recall that the basis Bn(x) is totally positive, reproduces polynomials up to
degree n and is a partition of unity.

The B-spline bases can be generalized to any sequence of equidistant knots on
the interval [0, L] by mapping x → h−1x, where h is the space step:

Bh,n(x) = {Bh,�,n(x) = Bn(h−1x − �),−n ≤ � ≤ h−1L− 1} , x ∈ [0, L] .

Thus, Bh,n is a basis for the spline space of degree n having breakpoints at the knots
h�, 0 ≤ � ≤ h−1L. We observe that for −n ≤ � ≤ −1 the functions Bh,�,n(x)
and Bh,h−1L+�,n(x) are left and right edge functions, respectively. Their support
is [0, h�] and [L − h�,L], respectively. The functions Bh,�,n(x) with 0 ≤ � ≤
h−1L− n− 1 are interior functions having support [h�, h(�+ n+ 1)].
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3 The Fractional Derivative of the Cardinal B-splines

The fractional derivatives of the B-spline functions are fractional B-splines, i.e.,
piecewise polynomials of noninteger degree [33]. Their explicit expression can be
obtained by applying the Caputo differential operator (2) to the basis functions
Bh,�,n(x) (see [20, 21] for details).

The Caputo derivative of the interior functions and of the right edge functions
can be evaluated by the differentiation rule

D
γ
x Bn(x) = Δn+1 x

n−γ
+

Γ (n+ 1− γ ) , x ≥ 0 , 0 < γ < n , (6)

where xγ+ = (max(0, x)
)γ is the fractional truncated power function (cf. [21, 33]).

This formula generalizes to the noninteger case the well-known differentiation rule
for the ordinary derivative of the B-spline

B(m)n (x) = Δ
n+1 xn−m+
(n−m)! , 0 ≤ m ≤ n− 1 . (7)

For −n ≤ � ≤ −1, the Caputo derivative of the left edge functions is given by
Pellegrino et al. [20]

D
γ
x Bn,�(x) = Δn+1(x − �)n−γ+

Γ (n+ 1− γ ) −
−�−1∑

r=0

(−1)r
(
n+ 1

r

)(
(x − �− r)n−γ
Γ (n+ 1− γ ) −

n−�γ 	∑

p=0

(−�− r)n−�γ 	−p x�γ 	−γ+p
(n− �γ 	 − p)!Γ (�γ 	 − γ + p + 1)

)
.

(8)
The fractional derivative of the refined basis functions Bh,�,n can be evaluated
recalling that, for any function f sufficiently smooth, it holds

D
γ
x f (h

−1x − �) = h−γDγ
h−1x

f (h−1x − �)

(cf. [20]).

4 Quasi-Interpolant Operators

A quasi-interpolant operator is an approximation of a given function that reproduces
polynomials up to a given degree. In particular, a spline quasi-interpolant operator
is a linear operator of type
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Qn y(x) =
∑

�∈Z
μ�(y) Bn(x − �) , (9)

where μ�(y), � ∈ Z, are continuous linear functionals that are determined by
imposing that Qn y is exact on polynomials up to degree m ≤ n. Usually,
the functionals μ�(y) are assumed to be local, i.e., only values of y in some
neighborhood of σ�,n = supp Bn(x − �) are used to construct μ�(y). We notice
that since μ�(y) is local and Bn(x− �) has compact support, for any x ∈ R the sum
in (9) is actually a finite sum.

There are several kinds of quasi-interpolant spline operators (see, for instance,
[5, 9, 13, 16, 28]). In this paper we consider Bernstein type operators [27] in which
the functionals μ�(y) are suitable values of y evaluated on points belonging to σ�,n.
The simplest choice is

μ�(y) = y(θ�) , (10)

where

θ� = �+ n+ 1

2
, � ∈ Z , (11)

are the Schoenberg nodes. This choice leads to the Schoenberg–Bernstein operator
that reproduces linear functions and has approximation order 1 [30]. Even if
the approximation order is poor, the Schoenberg–Bernstein operator has many
properties useful in applications. In particular, it is a positive operator that has shape
preserving properties. In fact, it enjoys the variation diminishing property, i.e., for
any linear function Λ and any function y it holds

S−(Qn (y −Λ)) ≤ S−(y −Λ) ,

where S−(y) denotes the number of strict sign changes of the function y. This prop-
erty reveals particular attractive in geometric modeling where the approximation of
a given set of data is required to reproduce their shape [8].

The operator Qn y is refinable, i.e., in the spline spaces generated by the B-spline
basis Bh,n, we can construct the refined operator

Qh,n y(x) =
∑

�∈Z
μh,�(y) Bh,�,n(x) , (12)

where μh,� (y) uses values of y in supp Bh,�,n. The functionals μh,�(y) have
expression

μh,�(y) = y(θh,�) ,

where θh,� = h θ� are the refined Schoenberg nodes.
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5 The Quasi-Interpolant Collocation Method

To solve the fractional differential problem (1) we approximate its solution by the
refinable Schoenberg–Bernstein operator (12) restricted to the interval [0, L], i.e.,

y(x) ≈ yh,n(x) =
Nh∑

�=−n
yh,n(θ̃h,�) Bh,�,n(x) , Nh = h−1L− 1 , x ∈ [0, L] ,

(13)
where θ̃ h,� are the Schoenberg nodes for the interval [0, L]. To determine the
unknown coefficients {yh,n(θ̃h,�),−n ≤ � ≤ Nh} we solve the differential problem
on a set of collocation points. For the sake of simplicity, here we assume the
collocation points are a set of equidistant nodes on the interval [0, L] having distance
δ = 2−s ,

Xδ = {xr = δ r, 0 ≤ r ≤ Nδ} , Nδ = δ−1L . (14)

Thus, collocating Eq. (1) on the nodes Xδ and using (13) we get the linear system

⎧
⎨

⎩

D
γ
x yh,n(xr)+ f (xr) yh,n(xr) = g(xr) , 1 ≤ r ≤ Nδ − 1 ,

ρr0 yh,n(x0)+ ρr1 y′h,n(x0)+ ζ r0 yh,n(xNδ )+ ζ r1 y′h,n(xNδ ) = cr , 1 ≤ r ≤ �γ 	 .
(15)

Now, let

Yh,δ =
[
yh,n(θ̃h,�),−n ≤ � ≤ Nh

]T
,

be the unknown vector,

Ah,δ =
[
Bh,�,n(xr ), 1 ≤ r ≤ Nδ − 1,−n ≤ � ≤ Nh

]

and

Dh,δ =
[
D
γ
x Bh,�,n(xr ), 1 ≤ r ≤ Nδ − 1,−n ≤ � ≤ Nh

]

be the collocation matrices of the refinable basis Bh,n and of its fractional derivative.
Then, let

Fδ =
[
f (xr), 1 ≤ r ≤ Nδ − 1

]T
, Gδ =

[
g(xr), 1 ≤ r ≤ Nδ − 1

]T
,

be the know terms. Finally, we define the parameter vectors
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Rk =
[
ρrk, 1 ≤ r ≤ �γ 	

]T
, k = 0, 1 ,

Zk =
[
ζ rk, 1 ≤ r ≤ �γ 	

]T
, k = 0, 1 ,

C = [cr , 1 ≤ r ≤ �γ 	
]T
,

and the vectors containing the boundary values of the basis functions and of their
first derivative

Bh,δ(x) =
[
Bh,�,n(x),−n ≤ � ≤ Nh

]
, x = 0, L ,

B′h,δ(x) =
[
B ′h,�,n(x),−n ≤ � ≤ Nh

]
, x = 0, L .

Thus, Eq. (15) can be written in matrix form as

⎧
⎨

⎩

(Dh,δ + Fδ ◦ Ah,δ)Yh,δ = Gδ ,

(
R0 Bh,δ(0)+ R1 B′h,δ(0)+ Z0 Bh,δ(L)+ Z1 B′h,δ(L)

)
Yh,δ = C ,

(16)

Here, V ◦ A denotes the entrywise product between a vector V and a matrix A
meaning that V has to be intended as a matrix having as many columns as A, each
column being a replica of the vector V itself. The entries of the matrices Ah,δ and
Dh,δ can be easily evaluated using formulas given in Sects. 2–3.

The linear system (16) hasNδ−1+�γ 	 equations andNh+n+1 unknowns. To
guarantee the existence of a unique solution the refinement step h, the distance of
the collocation points δ and the degree of the B-spline n have to be chosen such that
Nδ−1+�γ 	 ≥ Nh+n+1 [20]. We notice that the choiceNδ−1+�γ 	 > Nh+n+1 is
preferable since in this case there is a greater flexibility in the choice of the degree of
the B-spline. In this case we get an overdetermined linear system that can be solved
by the least squares method.

Finally, following the same reasoning line as in [20] (cf. also [1]) it can be proved
that the collocation method described above is convergent.

Theorem 1 The collocation method is convergent, i.e.

lim
h→0

‖y(x)− yh,n(x)‖∞ = 0,

where ‖y(x)‖∞ = maxx∈[0,L] |y(x)|.
We notice that since the convergence order of spline collocation methods is related
to the approximation properties of the spline spaces, we expect the infinity norm
of the error to decrease at least as hν , where ν is the smoothness of the known
terms, providing that the approximating function and the differential operator are
sufficiently smooth.
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6 Numerical Tests

6.1 Example 1

In the first test we solve the fractional differential problem

⎧
⎨

⎩

D
γ
x y(x)+ f (x) y(x) = g(x) , 0 < x < 1 ,

y(0)+ y(1) = 2 ,
(17)

where γ ∈ (0, 1) is a given real number and

f (x) = x 1
2 , g(x) = 2

Γ (2− γ ) x
1−γ + 2 x

3
2 .

The exact solution is y(x) = 2x so that the collocation method is exact for n ≥ 1.
To compare the exact and the numerical solutions, we evaluate the infinity norm of
the error eh,n(x) = y(x)− yh,n(x) as

‖eh,n‖∞ = max
0≤r≤ηNδ

|eh,n(xr )| ,

where xr = δr/η, 0 ≤ r ≤ ηNδ with η ∈ N
+. In the tests we choose η = 4. In the

table below we list the infinity norm of the error we obtain using the Schoenberg–
Bernstein operator with the B-splines of degree n = 3 for h = 1/8 and δ = 1/16.
To give an idea of the conditioning of the final linear system, the condition number
κh,n is also shown.

γ 0.25 0.5 0.75

‖eh,3‖∞ 7.33e−15 1.09e−14 2.44e−15

κh,3 2.58e+01 1.67e+01 1.64e+01

As expected, the error is in the order of the machine precision.

6.2 Example 2

In the second test we solve the fractional differential problem

⎧
⎨

⎩

D
γ
x y(x)+ y(x) = g(x) , 0 < x < 1 ,

y(0) = 0 , y(1) = 1 ,
(18)
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where γ ∈ (1, 2) is a given real number and

g(x) = Γ (ν + 1)

Γ (ν + 1− γ ) x
ν−γ + xν .

The exact solution is y(x) = xν . We approximate the solution by the Schoenberg–
Bernstein operator with n = 4, 5, 6 when ν = 2.5 and γ = 1.25, 1.5, 1.75. The
infinity norm of the error for different values of h and δ = h/2 is listed in the table
below:

‖eh,n‖∞ for γ = 1.25

h 2−3 2−4 2−5 2−6

n = 4 5.91e−05 1.25e−05 2.67e−06 5.74e−07

n = 5 3.84e−05 8.19e−06 1.73e−06 3.65e−07

n = 6 2.51e−05 5.35e−06 1.13e−06 2.39e−0

‖eh,n‖∞ for γ = 1.5

h 2−3 2−4 2−5 2−6

n = 4 1.05e−04 2.68e−05 6.72e−06 1.67e−06

n = 5 6.68e−05 1.71e−05 4.33e−06 1.09e−06

n = 6 4.10e−05 1.05e−05 2.66e−06 6.68e−07

‖eh,n‖∞ for γ = 1.75

h 2−3 2−4 2−5 2−6

n = 4 1.37e−04 4.20e−05 1.26e−05 3.72e−06

n = 5 8.02e−05 2.50e−05 7.62e−06 2.29e−06

n = 6 4.34e−05 1.34e−05 4.06e−06 1.22e−06

As expected, the norm of the error decreases when h decreases. We notice that
the error decreases also when n increases.

6.3 Example 3

In the last test we solve the fractional differential problem

⎧
⎨

⎩

D
γ
x y(x)+ y(x) = 0 , 0 < x < 1 ,

y(0) = 1 , y(1) = Eγ (−1γ ) ,
(19)
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where γ ∈ (1, 2) is a given real number and

Eγ (x) =
∑

�≥0

x�

Γ (γ �+ 1)
,

is the one-parameter Mittag-Leffler function [10]. The exact solution is y(x) =
Eγ (−xγ ). We approximate the solution by the Schoenberg–Bernstein operator with
n = 4, 5, 6. The infinity norm of the error for different values of h and δ = h/2
when γ = 1.25, 1.5, 1.75 is listed in the tables below:

‖eh,n‖∞ for γ = 1.25

h 2−3 2−4 2−5 2−6

n = 4 9.01e−03 4.55e−03 2.27e−03 1.13e−03

n = 5 8.01e−03 4.05e−03 2.03e−03 1.02e−03

n = 6 7.06e−03 3.57e−03 1.79e−03 8.98e−04

‖eh,n‖∞ for γ = 1.5

h 2−3 2−4 2−5 2−6

n = 4 3.66e−03 1.87e−03 9.41e−04 4.72e−04

n = 5 3.11e−03 1.59e−03 8.02e−04 4.03e−04

n = 6 2.63e−03 1.34e−03 6.76e−04 3.40e−04

‖eh,n‖∞ for γ = 1.75

h 2−3 2−4 2−5 2−6

n = 4 7.91e−04 4.10e−04 2.08e−04 1.05e−04

n = 5 6.32e−04 3.28e−04 1.67e−04 8.44e−05

n = 6 4.98e−04 2.57e−04 1.30e−04 6.57e−05

Also in this case the norm of the error decreases when h decreases and n
increases.

7 Conclusion

We have presented a collocation method based on spline quasi-interpolant operators.
The method is easy to implement and has proved to be convergent. The numerical
tests show that it is efficient and accurate. The method can be improved in several
ways. First of all, we used the truncated B-spline bases to construct the Schoenberg–
Bernstein operator. It is well known that truncated bases have a low accuracy in
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approximating the boundary conditions which can result in a poor approximation of
the solution. This problem can be overcome by using B-spline bases with multiple
nodes at the endpoints of the interval. The use of this kind of B-splines for the
solution of fractional problems has already been considered in [23] where the
analytical expression of their fractional derivative is also given. As for the quasi-
interpolants, even if the Schoenberg–Bernstein operator produces good results, it
is just second order accurate. To increase the approximation order, different quasi-
interpolant operators can be used, like the projector quasi-interpolants introduced in
[13] or integral or discrete operators [16, 28]. Finally, we notice that the accuracy of
the method could also be improved by using Gaussian points instead of equidistant
points (cf. [1, 6]). These issues are at present under study.
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Stochastic Collocation with Hierarchical
Extended B-Splines on Sparse Grids

Michael F. Rehme and Dirk Pflüger

Abstract B-spline approximations with uniform isotropic tensor product grids
soon reach computational limits, because the grid size increases exponentially with
the dimensionality. Sparse grids are an established technique to mitigate this curse of
dimensionality, and spatial adaptivity automatically selects only the most significant
grid points. To compensate for missing boundary points of the sparse grids, the
B-spline basis functions so far have been modified according to natural boundary
conditions. However, modified B-splines do not span the polynomial space anymore
and therefore lack a fundamental spline property. Recently we introduced hierarchi-
cal extended not-a-knot B-splines, which guarantee the polynomial basis property.
Now we apply them to a subsurface flow uncertainty quantification benchmark,
where we compare them to common spline bases on sparse grids, to Monte Carlo
and to polynomial chaos expansion. The new basis improves the quality of quantities
of interest, such as approximation error, mean and variance.

Keywords B-splines · Extension · Sparse grid · Uncertainty quantification ·
Stochastic expansion · Polynomial chaos

1 Introduction

Simulating real world processes through computer experiments [17] yields many
benefits. Lower costs compared to real experiments, many executions in parallel
and no risk to humans or the environment, just to name a few. However, computer
experiments are never capable of simulating the real world comprehensively and
always must be a compromise of precision and complexity.

The field of uncertainty quantification deals with the inevitably limited knowl-
edge of the real world, and allows for more realistic assessments of computer
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experiment results. This is done by introducing uncertainty to the input parameters
and observing how the uncertainty propagates through the model and influences the
results [29]. To increase the accuracy of the predictions for the underlying process
more uncertain input parameters can be added, such that the computer experiment
takes more aspects of the real world into account. However, the run-times and
necessary computational resources increase with the complexity of the model.

This problem can be dealt with by creating a surrogate that is a sufficiently
accurate approximation of the original model, but much faster to evaluate. For
several years B-spline basis functions [13] have been used for the creation of
surrogate models. However, the number of grid points of classical uniform isotropic
tensor product grids increases exponentially with the number of input parameters.
This is known as the curse of dimensionality [2]. Sparse Grids [3, 31] are an
established technique to mitigate the curse, in particular when created spatially
adaptive[19]. Sparse Grids have successfully been applied in combination with B-
splines for interpolation, optimization, regression and uncertainty quantification [15,
19, 21, 28]. When further increasing the dimensionality of the parameter space, the
boundary points of sparse grids again introduce exponential growth rates, and thus
must be omitted. The B-spline basis must compensate for this to prevent a dramatic
loss in approximation quality.

So far only a heuristical boundary treatment has been used [19, 28]. The left- and
right-most splines were modified to enforce second zero derivatives at the boundary
of the parameter domain. However, this can be disadvantageous in many cases,
where the objective function does not meet this requirement. In particular, modified
not-a-knot B-splines do not preserve the ability of the original not-a-knot B-spline
basis, including the boundary, to represent polynomials exactly, and therefore lack
one of the most important spline properties.

Recently we have introduced hierarchical extended not-a-knot B-splines for
usage on spatially adaptive sparse grids [20] based on the extension concept [14, 18].
This extended basis follows the premise of preserving the polynomial representation
property. In this work, we apply the new basis for the first time to a subsurface flow
benchmark from the field of uncertainty quantification [12]. With this we are able to
demonstrate that the new basis does not only represent polynomials exactly, but also
improves the approximation of general objective functions and quantities of interest.
We compare our results with a simple Monte Carlo approach and the widely used
polynomial chaos expansion [9, 30].

2 Sparse Grids

Full uniform isotropic tensor product grids are one of the most widely used
discretization approaches. However, their amount of grid points increases like
O(h−D), where h is the grid width and D is the dimensionality of the underlying
space. This exponential growth prevents calculations already for moderately high-
dimensional applications.
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Sparse Grids are a discretization scheme designed to mitigate this curse and
enable higher-dimensional approximations. The amount of grid points of non-
boundary regular sparse grids of level l with grid width hl only increases like
O(h−1

l (log2 h
−1
l )

D−1). At the same time, the L2-interpolation error of interpola-
tions with B-splines of degree n on regular sparse grids of level l still decays
asymptotically like O(hn+1

l (log2 h
−1
l )

D−1) [26], if the objective function is suffi-
ciently smooth. This is only slightly worse than the full grid error convergence rate
of O(hn+1

l ).
In contrast to the widely used combination technique, also known as Smolyak

scheme [27], we use spatially adaptive sparse grids [19]. These can automatically
be customized for the quantity of interest, resolving locally finer in more important
regions and coarser in less important ones. By doing so the number of grid points is
potentially reduced even further. This is important, because every grid point means
an expensive evaluation of the original model.

The definition of sparse grids is based on arbitrary hierarchical basis functions
ϕl,i of level l and index i. We now introduce sparse grids in this general form, but
later will only use hierarchical spline functions as bases.

2.1 Regular Sparse Grids

Without loss of generality, throughout this work, we restrict ourselves to parameters
in the unit hypercube [0, 1]D . Let Il be the hierarchical index set of level l ∈ N0,

Il :=
{
{0, 1}, l = 0,

{0 < i < 2l | i odd}, else.
(1)

Given univariate hierarchical basis functions ϕl,i of level l ∈ N0 and index i ∈ N0,
we define multivariate basis functions ϕl,i via tensor products,

ϕl,i =
D∏

d=1

ϕld ,id , l ∈ N
D
0 , i ∈ Il := Il1 × · · · × IlD , (2)

where l and i are multi-indices. Let now Hl := {xl,i = (xl1,i1 , . . . , xlD,iD ) | i ∈
Il} for xld ,id := idhld be the anisotropic grid of level l with grid widths hld :=
2−ld . We define the hierarchical subspaces Wl of level l through the basis functions
corresponding to Hl,

Wl := span{ϕl,i | i ∈ Il}. (3)

Regular boundary sparse grids V bl of level l ∈ N0 in D dimensions are defined as
the direct sum of these hierarchical subspaces,
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(a)

(b)

(c)

Fig. 1 (a) Hierarchical subspace scheme of level l = 3, (b) corresponding regular boundary sparse
grid V b3 and (c) corresponding regular nonboundary sparse grid V s3

V bl :=
⊕

|l′|1≤l
Wl′ , (4)

where |l′|1 := ∑D
d=1 l

′
d is the discrete �1 norm of l′. Unfortunately the number

of boundary points of a boundary sparse grid grows like O(2D). This growth
is exponential, still preventing discretization for higher dimensional applications.
Therefore the boundary points must be omitted. The D-dimensional nonboundary
sparse grid V sl of level l ∈ N is defined as

V sl :=
⊕

|l′|1≤l, l′d≥1∀d∈{1,...,D}
Wl′ . (5)

Figure 1 shows an illustration of the hierarchical subspace scheme, the correspond-
ing regular boundary sparse grid and the corresponding regular nonboundary sparse
grid.

2.2 Spatial Adaptivity

Regular sparse grids uniformly discretize the objective domain, spending too few
grid points in regions of interest and too many grid points in regions of little
significance. Spatially adaptive sparse grids [19] can automatically be adapted to the
objective function. Given an initial sparse grid approximation, each basis function’s
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benefit to the quantity of interest is estimated. Depending on this estimate, the
grid points corresponding to the most significant basis functions are refined. This
approach is more selective than classical dimensional adaptivity [11] and therefore
allows the employment of even fewer grid points.

Let xl,i be a sparse grid point. We define its hierarchical children C(l, i) as all
grid points xl′,i′ , for which there exists r ∈ {1, . . . , D}, s.t.

ld = l′d , id = i′d ∀d ∈ {1, . . . , D} \ {r},
l′r = lr + 1,

i′r ∈ {2ir − 1, 2ir + 1}.
(6)

Let now G be a spatially refined grid,

G := {xl,i | (l, i) ∈ L}, (7)

where L ⊂ {(l, i) | l ∈ N
D
0 , i ∈ Il} is some finite level-index set. Note that this

includes regular sparse grids as a special case. The set of all level-index pairs of
refineable grid points, Lref ⊆ L, is defined as

Lref := {(l, i) ∈ L | C(l, i) �⊂ G}. (8)

The sparse grid G can now be refined, by iterating the following two steps until a
given threshold for the total number of grid points is exceeded. First identify the
level-index pair of the grid point xl∗,i∗ ∈ Lref and corresponding basis function
ϕl∗,i∗ with most influence on the quantity of interest. Second, add all its hierarchical
children C(l∗, i∗) to the grid.

Many criteria for the identification of (l∗, i∗) exist. In this work we apply the
standard surplus criterion [19]. It is based on the hierarchy of the basis, where larger
interpolation coefficients |αl,i| imply a worse local approximation. Consequently we
use

(l∗, i∗) := argmax(l,i)∈Lref |αl,i|. (9)

3 Basis Functions

Sparse grids are widely used in combination with the popular linear hat func-
tions, i.e. B-splines of degree one. But if the objective function admits a certain
smoothness, an approximation should preserve it or it would otherwise lose valuable
information. Therefore in the last years B-splines have been used increasingly
often on (spatially adaptive) sparse grids [15, 19, 28]. Their local support and



224 M. F. Rehme and D. Pflüger

arbitrary choosable degree result in their well-known approximation quality, while
the underlying sparse grid keeps the number of necessary function evaluations small.

Before we define the new extended not-a-knot B-spline basis we must introduce
the underlying classical not-a-knot B-splines. Furthermore we define modified not-
a-knot B-splines to motivate the new basis. As is common, throughout this paper we
only define and use splines of odd degrees.

3.1 B-Splines

Let ξ := (ξ0, . . . , ξ q+n) be a knot-sequence, i.e. a non-decreasing sequence of real
numbers ξk for k ∈ {0, . . . , q + n} and some q ∈ N0. The B-spline bnk,ξ of index k
and degree n is defined by the Cox-de-Boor recursion [4, 6],

bnk,ξ (x) =
⎧
⎨

⎩

x − ξk
ξk+n − ξk

bn−1
k,ξ (x)+

ξk+n+1 − x
ξk+n+1 − ξk+1

bn−1
k+1,ξ (x) n ≥ 1,

χ [ξk,ξk+1](x) n = 0,
(10)

where χ [ξk,ξk+1](x) evaluates to one in the interval [ξk, ξk+1] and zero elsewhere.
Originally, Schoenberg introduced B-splines with an infinite and uniform knot

sequence ξ∞h = (. . . , ξ∞h,−1, ξ
∞
h,0, ξ

∞
h,1, . . . ), where ξ∞h,k = kh for grid width h ∈ R

and index k ∈ Z [23]. The corresponding B-splines bn
k,ξ∞h

form a basis of Sn
ξ∞h

, the

spline space of n times continuously differentiable piecewise polynomials on the
knot intervals.

When using a finite knot sequence this desirable basis property is no longer valid,
because the Schoenberg-Whitney conditions [13, 24] do not hold at the left-most
and right-most knot intervals. A common approach to revalidate these conditions
are not-a-knot B-splines [5, 28].

3.2 Not-a-Knot B-Splines

Not-a-knot B-splines are motivated by requiring continuity of the n-th derivatives
at the n−1

2 left-most and n−1
2 right-most knots. This requirement is equivalent to

excluding the according n− 1 knots from the B-spline defining knot sequence ξ but
keeping them in the set of interpolation nodes.

Without loss of generality we restrict ourselves to uniform B-splines of level
l ∈ N0 on the unit interval [0, 1] using the uniform knot sequence ξn,ul :=
(ξ
n,u
l,0 , . . . , ξ

n,u
l,2l+2n

), where ξn,ul,k := (k − n)hl for grid width hl := 2−l . Con-

sequently, we derive ξn,nak
l := (ξ

n,nak
l,0 , . . . , ξ

n,nak
l,2l+n+1

), the uniform not-a-knot
sequence of level l and degree n as
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ξ
n,nak
l,k :=

⎧
⎪⎪⎨

⎪⎪⎩

ξ
n,u
l,k , k = 0, . . . , n,

ξ
n,u
l,k+(n−1)/2, k = n+ 1, . . . , 2l ,

ξ
n,u
l,k+n−1, k = 2l + 1, . . . , 2l + n+ 1.

(11)

The definition of ξn,nak
l,k is only applicable if l ≥ �log2(n+1)	. Otherwise we cannot

exclude n − 1 knots from the sequence. Therefore, if l < �log2(n + 1)	, we use
ξ
n,nak
l,k := ξn,ul,k and Lagrange polynomials

Ll,k(x) :=
∏

0≤m≤2l ,
m�=k

x − ξn,ul,m
ξ
n,u
l,k − ξn,ul,m

, k = 0, . . . , 2l (12)

as basis functions. This ensures a basis for the polynomial space on the first levels.
Finally, the not-a-knot B-spline basis bn,nak

l,k of degree n, level l and index k is
given by

b
n,nak
l,k (x) :=

⎧
⎨

⎩
bn
k,ξ

n,nak
l,k

(x) l ≥ �log2(n+ 1)	,
Ll,k(x) l < �log2(n+ 1)	.

(13)

The knot-sequence ξn,nak
l,k still includes the boundary points ξn,nak

l,0 = 0 and

ξ
n,nak
l,2l+n+1

= 1. Because the number of boundary points of higher-dimensional
sparse grids dominates the total number of grid points, the boundary points
must be omitted. However, simply excluding the boundary points, and thus the
corresponding B-spline basis functions, impairs the approximation quality at the
boundaries. Therefore an appropriate boundary treatment is necessary.

3.3 Modified Not-a-Knot B-Splines

So far modified not-a-knot B-splines [28] are used to compensate for the missing
boundary points. Motivated by an application with natural boundary conditions, they
were defined to enforce zero second derivatives at the domain’s boundaries. The
resulting basis functions extrapolate towards the boundaries, as can be seen in Fig. 3.
Consequently the modified not-a-knot B-spline bn,modl,k of degree n, level l and index
k is defined as,
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Fig. 2 Schematic visualization of the extension of not-a-knot B-splines of degree n = 3 on a one-
dimensional regular grid of level l = 4. The boundary splines with indices Jl = {0, 16} are added
to the n + 1 next inner splines Il(0) = {1, 2, 3, 4} and Il(16) = {12, 13, 14, 15}, indicated with
arrows

b
n,mod
l,k

(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 l = 1, k = 1,

b
n,nak
l,k

(x)+ bn,nak
l,k−1(x) l ≥ 2, k = 1, n = 1,

b
n,nak
l,k

(x)−
d2

dx2 b
n,nak
l,k (0)

d2

dx2 b
n,nak
l,k−1(0)

b
n,nak
l,k−1(x) l ≥ 2, k ∈ {1, . . . , n+1

2 }, n > 1,

b
n,mod
l,2l−k(1− x) l ≥ 2, k ∈ {2l − n+1

2 , . . . , 2l − 1},
b
n,nak
l,k

(x) otherwise.

(14)

Note, that for linear splines of degree n = 1 the second derivatives always vanish.
Therefore the modification is defined as the linear continuation of the left-most and
right-most inner splines.

Some applications require zero second derivatives, and thus are accurately
representable by modified not-a-knot B-splines. However, this condition does not
hold in general and modified not-a-knot B-splines are not capable of representing
arbitrary functions. In particular the standard monomial basis {xm | 0 ≤ m ≤ n}
for the polynomial space P

n has second derivatives unequal to zero for n ≥ 2. The
modified not-a-knot B-spline basis is thus not even capable of exactly representing
polynomials, which is one of the most important properties for spline bases.

3.4 Extended Not-a-Knot B-Splines

The extension of B-splines was originally introduced in the context of WEB-
splines [14] and later generalized for hierarchical subdivision schemes [18].
Recently we have introduced hierarchical extended not-a-knot B-splines for the
usage on sparse grids [20].
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The idea of the extension is to add the omitted splines bj , j ∈ Jl := {0, 2l}
to the remaining splines in such a way, that their contribution to the capability of
representing polynomials is preserved. In a first step, we interpolate {Pm | m ∈
M := {0, . . . , n + 1}} a basis for the polynomial space P

n with the regular not-a-
knot B-spline basis including the boundary splines. Let l ≥ �log2(n+ 2)	, then the
polynomial basis is represented exactly by definition of the not-a-knot B-splines.
This results in interpolation coefficients αm,i , such that

Pm =
2l∑

k=0

αm,kb
n,nak
l,k ∀m ∈ M. (15)

In practice we use the monomials Pm = xm, but the theory is independent of this
particular choice.

In a next step, we identify the closest n + 1 inner indices Il(j) for each index
j ∈ Jl . Now the coefficients αj , j ∈ Jl are represented as linear combinations of
the coefficients αi, i ∈ Il(j), i.e.

αj =
∑

i∈Il (j)
ei,j αi, (16)

where ei,j ∈ R are the extension coefficients. See Fig. 2 for an illustration.
Let Jl(i) := {j ∈ Jl | i ∈ Il(j)} be the dual of Il(j) and P ∈ P

n be an arbitrary
polynomial. Following eq. (15) it holds

P =
∑

m∈M
pmPm =

∑

m∈M

∑

i∈Il
pmαm,ib

n,nak
l,i +

∑

m∈M

∑

j∈Jl
pmαm,j b

n,nak
l,j (17)

for uniquely defined coefficients pm, αm,i, αm,j ∈ R. Exploiting the finiteness of
the setsM , Il and Jl , we interchange the sums,

P =
∑

i∈Il

(
∑

m∈M
pmαm,i

)
b
n,nak
l,i +

∑

j∈Jl

(
∑

m∈M
pmαm,j

)
b
n,nak
l,j . (18)

Because Jl(i) is the dual of Il(j), and by the definition of the extension coefficients
ei,j in eq. (16), it holds

P =
∑

i∈Il

(
∑

m∈M
pmαm,i

)

︸ ︷︷ ︸
=:βi

⎛

⎝bn,enak
l,i +

∑

j∈Jl(i)
ei,j b

n,nak
l,j

⎞

⎠

︸ ︷︷ ︸
=:bn,el,i

(19)

=
∑

i∈Il
βib

n,e
l,i . (20)
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(a) (b) (c)

Fig. 3 (a) Hierarchical not-a-knot B-splines with boundary basis functions, (b) hierarchical
modified not-a-knot B-splines and (c) hierarchical extended not-a-knot B-splines of degree 3 and
levels 0, 1, 2, 3 and 4, respectively. The not-a-knot change in the knot sequence is illustrated with
crosses at xl,1 and xl,2l−1

Consequently the extended not-a-knot B-spline bn,el,i of degree n, level l and index i
is defined through eq. (19)

b
n,e
l,i :=

{
b
n,nak
l,i +∑j∈Jl(i) ei,j b

n,nak
l,j l ≥ �log2(n+ 2)	,

Ll,i(x) l < �log2(n+ 2)	, (21)

where again Lagrange polynomials are employed on lower levels to ensure the
polynomial basis property, as long as there are not enough inner knots for the
extension.

For the usage on sparse grids, all presented B-spline basis functions are applied in
the hierarchical manner introduced in Eq. (3). See Fig. 3 for an illustration. Recently
we showed that the hierarchical extended not-a-knot B-spline basis fulfills the
desired polynomial representation property [20].

4 Expansion Methods

The field of uncertainty quantification generalizes the concept of numerical mod-
eling by introducing nondeterminism, thereby allowing more accurate simulations
of the real world. Instead of real values, parameters are random variables obeying
probability density functions. The uncertainty of the input parameters is then
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propagated through the model resulting in uncertain outputs. In order to estimate
likely outcomes of the model, stochastic values such as mean and standard deviation
can be calculated. Two of the most widely used techniques to calculate these values
are stochastic collocation and polynomial chaos expansion (PCE).

Formally let (Ω,F , P ) be a complete probability space withΩ ⊂ R
D being the

D-dimensional sample space of all possible outcomes, F the σ -algebra of events
and P : F → [0, 1] the probability measure. Without loss of generality we assume
Ω ⊆ [0, 1]D . Let X := (X1, . . . , XD) ∈ Ω be a random vector consisting of D
random variables. We assume that the according random variables admit statistically
independent probability density functions "1, . . . , "D and thus the random vector is
distributed according to their product distribution � :=∏Dd=1 "d .

4.1 Stochastic Collocation

Stochastic collocation is based on the process of replacing the original objective
function f by a surrogate f̃ , and performing stochastic analysis on the surrogate.
We create the surrogate as a linear combination of B-splines bl,i on an adaptively
created sparse grid G with level-index set L,

f ≈ f̃ :=
∑

(l,i)∈L
αl,ibl,i, (22)

where the coefficients αl,i are computed via interpolation at the sparse grid points.
From this we approximate the mean E(f ) and variance V(f ) of the objective
function using Gauss-Legendre quadrature,

E(f ) ≈ E(f̃ ) =
∫

[0,1]D
f̃ (X)�(X)dX (23)

≈
∑

k

f̃ (xk)�(xk)ωk, (24)

V(f ) ≈ V(f̃ ) = E(f̃ 2)− E(f̃ )2, (25)

where xk are the points and ωk the weights of the quadrature rule. The order of
the quadrature rule is chosen depending on the distribution �. Being piecewise
polynomials, splines are exactly integrated by the Gauss-Legendre quadrature rule
of order (n+1)/2 with respect to a uniform probability density function. Therefore,
if any of the density functions "d is uniform, the quality of the approximation f̃
directly propagates to the quality of the stochastic values.
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4.2 Polynomial Chaos Expansion

Generalized polynomial chaos is based on the Wiener-Askey scheme [30], where
Hermite, Legendre, Laguerre, Jacobi and generalized Laguerre polynomials are
used to model the effects of uncertainties of normal, uniform, exponential, beta and
gamma distributed random variables respectively. These polynomials are optimal
for the according distribution in the sense, that they are orthogonal with respect to
the according inner product [9].

If other distribution types are required, nonlinear variable transformations like
Rosenblatt [22] and Nataf [7] can be applied, but convergence rates are typically
decreased by this [9]. Alternatively orthogonal polynomials matching the given
distribution can be numerically generated [8]. For a fair comparison, our numerical
examples all obey the distributions from the Wiener-Askey scheme. Note however,
that stochastic collocation with B-splines on sparse grids is not limited in the type
of distribution and can be applied directly for any given distribution.

The actual chaos expansion takes the form

f (X) = γ 0Φ0 +
D∑

d=1

γ dΦ1(Xd)+
D∑

d=1

d∑

t=1

γ d,tΦ2(Xd,Xt )+ . . . , (26)

where Φd are the basis functions from the Wiener-Askey scheme and each
additional set of nested summation introduces an additional order of polynomials.
Usually the order-based indexing is replaced by term-based indexing to simplify the
representation. Consequently,

f (X) =
∞∑

k=0

γ kΨk(X), (27)

where there is a direct correspondence between γ d,t,... and γ k and between
Φt(Xd,Xt , . . . ) and Ψk(X), which are multivariate polynomials.

The PCE coefficients γ k are calculated via spectral projection, taking advantage
of the orthogonality of the polynomials to extract each coefficient,

γ k = 〈f,Ψk〉
〈Ψ 2

k 〉
= 1

〈Ψ 2
k 〉
∫

[0,1]D
f (X)Ψk�(X)dX. (28)

The integral in eq. (28) must be numerically calculated. In high-dimensional settings
usually regular sparse grids based on the combination technique are used [9] and we
too use this approach.

Once the expansion coefficients have been calculated, the desired stochastic
quantities follow directly, because of the orthogonality of the polynomials,

E(f ) = γ 0, (29)
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V(f ) =
∞∑

k=0

γ k2〈Ψ 2
k 〉�. (30)

In practice the expansion representation of the variance must be truncated, thus PCE
tends to underestimate the variance.

5 Numerical Results

We will measure the interpolation error between an objective function f : Ω → R

and a surrogate f̃ : Ω → R with the normalized root-mean-square error (NRMSE).
For R ∈ N given samples {xr ∈ Ω | r = 1, . . . , R}, the NRMSE is defined as

1

fmax − fmin

√∑R
r=1(f (xr )− f̃ (xr ))2

R
, (31)

where fmax := maxr=1,...,R f (xr ) and fmin := minr=1,...,R f (xr ). In our examples
we used R = 100000. Mean and variance errors are measured relatively,

εE = |E(f )− E(f̃ )|
E(f )

, εV = |V(f )− V(f̃ )|
V(f )

. (32)

All results in this chapter, except for polynomial chaos expansion, were calculated
with our software SG++ [19], a general toolbox for regular and spatially adaptive
sparse grids. It is available open-source for usage and comparison [25]. Our spatial
adaptivity algorithm was set up to refine up to 25 points in each refinement step,
starting with a regular sparse grid of level 0 for not-a-knot B-splines on boundary
sparse grids and level 1 otherwise.

In practice the extension coefficients must be calculated only once. This allows an
efficient implementation of the new basis. The precalculated extension coefficients
we used are listed in Table 1.

Table 1 Extension coefficients ei,j for the degrees n ∈ {1, 3, 5} based on Pm = xm,m ∈ M . Only
the coefficients for the extension at the left boundary are shown, i.e. j = 0. The right boundary is
treated symmetrically. For degree 5 and level 3, the left and right extensions overlap, resulting in a
special case

n [e1,0, . . . , en+1,0]
1 [2,−1]
3 [5,−10, 10,−4]
5

{
[8,−28, 42,−35, 20,−6] l = 3,

[8,−28, 56,−70, 56,−21] l > 3
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Fig. 4 Normalized root mean square error for the interpolation of f (x) = exp(x) with not-a-knot
B-splines with and without boundary points, modified not-a-knot B-splines and extended not-a-
knot B-splines on regular sparse grids for degrees n ∈ {1, 3, 5}

5.1 Exponential Objective Function

We first verify the improved convergence rates of extended not-a-knot B-splines
in a simple setup, which illustrates why the new basis functions were necessary.
We interpolate the one-dimensional exponential function with the common spline
functions used in sparse grid context and measure the NRMSE, see Fig. 4.

The not-a-knot B-splines without boundary points or any boundary treatment
converge very slowly, clearly showing the need for appropriate boundary treatment.
The modified not-a-knot B-splines converge faster but are still far away from the
optimal convergence rates of O(h−(n+1)). Only not-a-knot B-splines with boundary
points and extended not-a-knot B-splines reach the optimal convergence rates.

In this one-dimensional example the additional costs of the two boundary points
are negligible. However, in higher-dimensions 2D boundary points of a level 0
sparse grid can already exceed the computational limits, leaving extended not-a-
knot B-splines as the only viable alternative.
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Table 2 The input variables and according distributions for the borehole model

Variable Distribution Description

rw N(μ = 0.1, σ = 0.0161812) Radius of borehole

r Lognormal(μ = 7.71, σ = 1.0056) Radius of influence

Tu Uniform[63070, 115600] Upper aquifer transmissivity

Hu Uniform[990, 1110] Upper aquifer potentiometric head

Tl Uniform[63.1, 116] Lower aquifer transmissivity

Hl Uniform[700, 820] Lower aquifer potentiometric head

L Uniform[1120, 1680] Borehole length

Kw Uniform[9855, 12045] Borehole hydraulic conductivity

5.2 Borehole Model

The next example is a real world application, modeled in 1983 by Harper and Gupta
for the office of nuclear waste isolation [12]. Since then, it has been used many
times for testing new approximation methods, e.g. in [16, 32]. A borehole is drilled
through an aquifer above a nuclear waste repository, through the repository, and to
an aquifer below. The input parameter ranges are defined in Table 2, the response
Q ∈ R is the flow in m3/yr and is given by

Q = 2πTu(Hu −Hl)
ln(r/rw)

(
1+ 2LTu

ln(r/rw)r2
wKw

+ Tu
Tl

) . (33)

In terms of calculating mean and variance we compare our method to the
polynomial chaos expansion implementation of the DAKOTA library [1] and Monte
Carlo. We compare calculated means and variances to a reference solution computed
with extended not-a-knot B-splines of degree 5 on a spatially adaptive sparse grid
with 35,000 grid points. We verified this reference solution by calculating another
reference solution using DAKOTA’s polynomial chaos expansion based on a sparse
grid of level 5 with 34,290 grid points. The difference between both results for mean
and variance is smaller than 10−11.

Figure 5 shows the NRMSE, the relative mean error and relative variance errors
for all introduced B-splines on regular and spatially adaptive sparse grids, simple
Monte Carlo and polynomial chaos expansion. For this problem B-splines of degree
n = 5 performed best and the plots show only these results. However, the free
choice of the B-spline degree makes the approach very flexible and allows to react
to local features of general objective functions. While higher degree approximations
are in general better for smooth functions, they can start to oscillate, making lower
degrees advantageous.

B-splines without boundary points or any boundary treatment barely converge,
again demonstrating the urgent need for compensation, when omitting the boundary
points. For B-splines with boundary points the errors do converge, but slower than
for modified or extended not-a-knot B-splines, which can resolve the inner domain
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Fig. 5 Normalized root mean square error for the approximation of the borehole model and
calculation of its mean and variance with not-a-knot B-splines with and without boundary points,
modified not-a-knot B-splines and extended not-a-knot B-splines of degree 5 on regular and
adaptive sparse grids, polynomial chaos expansion and Monte Carlo

much finer. Of these two, the extended not-a-knot B-splines perform significantly
better. In all cases spatial adaptivity increases the convergence rate significantly
over regular Sparse Grids.

The polynomial chaos expansion’s NRMSE is worse than that of modified and
extended not-a-knot B-splines. That is because the underlying global polynomials
cannot react to local features, as the spline bases can. However, its approximation of
the mean is best among all shown methods. This can be explained by Eq. (29). The
mean of a polynomial chaos approximation is directly given by its first coefficient
γ 0 and independent of all other terms. So the mean of a polynomial chaos approx-
imation can be disproportionately better than its overall approximation quality. The
variance approximation on the other hand, which is calculated according to Eq. (30),
theoretically relies on all, infinitely many, coefficients. In practice the sum must
be truncated. Consequently the polynomial chaos expansion tends to underestimate
the variance and it can be seen, that the extended not-a-knot B-splines on spatially
adaptive sparse grids approximate the variance better.

As expected the simple Monte Carlo approach is easily outperformed by almost
all other techniques.
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6 Conclusions and Outlook

In this article we have demonstrated the need for proper boundary treatment when
creating surrogates with B-splines on sparse grids for moderately high-dimensional
problems. We have shown that modified not-a-knot B-splines are not sufficient
if the objective function does not have second zero derivatives at the boundary.
Our recently introduced extended not-a-knot B-splines performed significantly
better in a real world uncertainty quantification benchmark. Not only the overall
approximation is improved but also the derived stochastic quantities of interest. The
results of our new method are comparable to, and for some quantities of interest even
outperform, widely used polynomial chaos expansion. This makes the technique an
interesting alternative, in particular for objective functions with local features that
often can hardly be resolved by global polynomial approaches.

For this work we used the standard surplus-based refinement criterion. However,
other refinement criteria based on means or variances have successfully been used in
the context of uncertainty quantification and sparse grids [10]. These might improve
our techniques results even further.
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Trivariate Interpolated Galerkin Finite
Elements for the Poisson Equation

Tatyana Sorokina and Shangyou Zhang

Abstract When applying finite element method to the Poisson equation on a
domain in R

3, we replace some Lagrange nodal basis functions by bubble functions
whose dual functionals are the values of the Laplacian. To compute the coefficients
of these Laplacian basis functions instead of solving a large linear system, we
interpolate the right hand side function in the Poisson equation. The finite element
solution is then the Galerkin projection on a smaller vector space. We construct
a qudratic and a cubic nonconforming interpolated finite elements, and quartic
and higher degree conforming interpolated finite elements on arbitrary tetrahedral
partitions. The main advantage of our method is that the number of unknowns
that require solving a large system of equations on each element is reduced. We
show that the interpolated Galerkin finite element method retains the optimal order
of convergence. Numerical results confirming the theory are provided as well as
comparisons with the standard finite elements.

Keywords Conforming finite element · Conforming finite element · Interpolated
finite element · Tetrahedral grid · Poisson equation

1 Introduction

When solving partial differential equations using finite element method, the full
space Pk of polynomials of degree ≤ k on each element is typically used in order to
achieve the optimal order of approximation. Occasionally, the Pk polynomial space
may be enriched by the so-called bubble functions. This is done for stability or
continuity, while the order of approximation is not increased, cf. [2–4, 6–10, 15–
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18]. The only exception when a proper subspace of Pk is used while retaining the
optimal order of convergence (O(hk) in the H 1-norm) can be found in [12, 13].
In these papers, we constructed a harmonic finite element method for solving the
Laplace equation (1.1),

−Δu = 0, in Ω,

u = f, on ∂Ω,
(1.1)

where Ω is a bounded polygonal domain in R
2. In this method only harmonic

polynomials are used in constructing the finite element space because the exact
solution is harmonic. However, the harmonic finite element method of [12, 13]
cannot be applied (directly) to the Poisson equation,

−Δu = f, in Ω,

u = 0, on ∂Ω,
(1.2)

where Ω is a bounded polyhedral domain in R
3.

Let Th be a tetrahedral grid of size h on a polyhedral domain Ω in R
3. Let

∂K = ∪K∈Th∂K . When using the standard Lagrange finite elements to solve (1.2),
the solution is given by

uh =
∑

xi∈∂K\∂Ω
uiφi +

∑

xi∈Ω\∂K
ujφj +

∑

xk∈∂Ω
ckφk, (1.3)

where {φi, φj , φk} are the nodal basis functions at element-boundary, element-
interior and domain boundary, respectively, ck are interpolated values on the
boundary, and both ui and uj are obtained from the Galerkin projection by solving
of a linear system of equations.

In [14] an interpolated Galerkin finite element method is proposed for the 2D
Poisson equation. In this paper, we extend this idea to the trivariate setting. The main
idea can be described as follows. We add non-harmonic polynomial basis functions
to the harmonic finite element solution of [12, 13] to obtain a solution to (1.2). That
is, the solution is obtained as

uh =
∑

xi∈∂K\∂Ω
uiφi +

∑

xi∈Ω\∂K
cjφj +

∑

xk∈∂Ω
ckφk, (1.4)

where both cj and ck are interpolated values (of the right hand side function f , or of
the boundary condition), and only ui are obtained from the Galerkin projection. In
these constructions, the linear system of Galerkin projection equations involves only
the unknowns on ∂K \ ∂Ω . The number of unknowns on each element is reduced
from

(
k+3

3

)
to 2k2 + 2, i.e., from O(k3) to O(k2). Compared to the standard finite
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element, the new linear system is smaller (good for a direct solver) and has a better
condition number (by numerical examples in this paper.)

This method is similar to, but different from, the standard Lagrange finite element
method with static condensation. In the latter, internal degrees of freedom on each
element remain unknowns and are represented by the element-boundary unknowns.
For example, the Jacobi iterative solutions of condensed equations are identical to
those of original equations with a proper unknown ordering (internal unknowns
first). That is, the static condensation is a method for solving linear systems of
equations arising from the high order finite element discretization, which does
not define a different system. In the new method the coefficients of some degrees
of freedom are no longer unknowns but given directly by the data. For ease of
analysis we use a local integral of the right hand side function f to determine these
coefficients. We can simply use the pointwise values of f instead. The new method
is like the standard Lagrange finite element method when some “boundary values”
are given on every element.

The paper is organized as follows. In Sects. 2 and 3, for arbitrary tetrahedral
partitions, we construct a P2 and a P3 nonconforming interpolated Galerkin
finite elements with one internal Laplacian basis function for each tetrahedron. In
Sect. 4, for arbitrary tetrahedral partitions, we construct quartic and higher degree
conforming interpolated Galerkin finite elements with

(
k−1

3

)
internal Laplacian basis

functions for each tetrahedron. In Sect. 5, we show that the interpolated Galerkin
finite element solution converges at the optimal order. In Sect. 6, numerical tests are
provided to compare the interpolated Galerkin finite elements (P2 to P6) with the
standard ones.

2 The P2 Nonconforming Interpolated Galerkin Finite
Element

Let Th be a quasi-uniform tetrahedral grid of size h on a polyhedral domain Ω in
R

3. On all interior tetrahedra, a P2 nonconforming finite element function must have
continuous moments of degree one. Let K := [x1, x2, x3, x4] be a tetrahedron in Th
with vertices vi , and let (λ1, λ2, λ3, λ4) be the barycentric coordinates associated
with K . That is, λi is a linear function on K assuming value 1 at xi , and vanishing
on the face Fi opposite vertex xi . From [1, 5], we know that there is only one
nonconforming quadratic bubble function per K:

φ0 = c0(2− 4
4∑

i=1

λ2
i ), (2.1)

where the constant c0 is determined by (2.2) below, satisfying three vanishing 1-
moment conditions on every face Fi ofK , and one 0-moment of Laplacian condition
on K:
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∫

Fi

φ0λ
α
j λ
β
k λ
γ

l = 0, i �= j �= k �= l, α + β + γ = 1,

∫

K

Δφ0φ0 dx = 1. (2.2)

For a P2 element on K , there are ten domain points located at the vertices and
mid-edges of K . Let {ψi}10

i=1 be the Lagrange basis functions of a conforming P2
element onK , i.e., each ψi assumes value 1 at one domain point and vanishes at the
remaining nine. We define the interpolated Galerkin finite element basis as follows:

φi = ψi − φ0

∫

K

Δψiφ0dx,

∫

K

Δφi dx = 0, i = 1, . . . , 10.

We define the P2 nonconforming interpolated Galerkin finite element space by

Vh = {vh | vh has continuous 1-moments on face triangle,

vh has vanishing 1-moments on boundary triangle,

vh|K =
10∑

i=1

ciφi + u0φ0 on each K ∈ Th}.
(2.3)

The interpolated Galerkin finite element solution for the Poisson equation (1.2) is
defined by

uh =
∑

K∈Th

( 10∑

i=1

ciφi − φ0

∫

K

f (x)φ0dx
)
∈ Vh (2.4)

such that

(∇huh,∇hvh) = (f, vh) ∀vh =
∑

K∈Th
(

10∑

i=1

viφi) ∈ Vh, (2.5)

where ∇h denotes a picewise defined gradient, and the dependency of φi on K is
omitted for brevity of notation.
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3 The P3 Nonconforming Interpolated Galerkin Finite
Element

Let K be a tetrahedron with the associated barycentric coordinates (λ1, λ2, λ3, λ4),
as defined in Sect. 2. Then there is precisely one nonconforming cubic bubble
function on K ,

φ0 = c0

( 4∑

i=1

(5λ3
i + 90

λ1λ2λ3λ4

λi
)− 3

)
, (3.1)

satisfying vanishing 1-moment conditions on every face Fi ofK , and one 0-moment
of Laplacian condition on K:

∫

Fi

φ0λ
α
j λ
β
k λ
γ

l = 0, i �= j �= k �= l, α + β + γ = 2,

∫

K

Δφ0φ0 dx = 1.

For cubic finite elements, there are twenty domain points in each K , and twenty
Lagrange basis functions {ψi}20

i=1. We define the interpolated Galerkin finite element
basis as follows

φi = ψi − φ0

∫

K

Δψiφ0dx, i = 1, .., 20.

The P3 nonconforming interpolated Galerkin finite element space is defined by

Vh = {vh | vh has continuous 2-moments on face triangle,

vh has vanishing 2-moments on boundary triangle,

vh|K =
20∑

i=1

ciφi + u0φ0 on each K ∈ Th}.
(3.2)

The P3 interpolated Galerkin finite element solution for the Poisson equation (1.2)
is defined by

uh =
∑

K∈Th

( 20∑

i=1

ciφi − φ0

∫

K

f (x)φ0dx
)
∈ Vh (3.3)

such that
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(∇huh,∇hvh) = (f, vh) ∀vh =
∑

K∈Th
(

20∑

i=1

viφi) ∈ Vh. (3.4)

4 The Pk, k ≥ 4, Conforming Interpolated Galerkin Finite
Element

Let K be a tetrahedron with the associated barycentric coordinates (λ1, λ2, λ3, λ4),
as defined in Sect. 2. For k ≥ 4, there are

(
k−1

3

)
domain points strictly interior to

K . We shall refer to them as internal degrees of freedom. In this section, we define
a Pk interpolated Galerkin conforming finite element on general tetrahedral grids,
where the internal degrees of freedom are determined by interpolating the values of
the function f on the right hand side of (1.2).

We first deal with
(
k+3

3

)− (k−1
3

) = 2k2+ 2 domain points on the boundary ofK:

D :=
{
(i1x1 + i2x2 + i3x3 + i4 + x4)/k | 0 ≤ ij ≤ k,

4∑

j=1

ij = k,
4∏

j=1

ij = 0
}
.

(4.1)

The first (2k2 + 2) linear functionals Fl := u(ξ l), ξ l ∈ D, l = 1, . . . , 2k2 + 2, (the
dual basis of the finite element basis) are nodal values at these face Lagrange nodes.
The remaining

(
k−1

3

)
linear functionals are the weighted Laplacian (k−4)-moments

corresponding to the strictly interior domain points. Let B be a basis for Pk−4, and
let

{
Fj (Δu) =

∫

K

pj

4∏

i=1

λiΔu dx | pj ∈ B, j = 2k2 + 3, . . . ,

(
k + 3

3

)}
. (4.2)

Lemma 1 The set of linear functionals in (4.1) and (4.2) uniquely determines a
polynomial of degree ≤ k.
Proof We have a square linear system of equations. Thus, we only need to show the
uniqueness of the solution. Let uh have zero values for all these linear functionals.
Therefore, uh is identically zero on the boundary of K . Then

uh = u4

4∏

i=1

λi for some u4 ∈ Pk−4.

Letting p = u4 in (4.2), we obtain
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0 =
∫

K

u4

4∏

i=1

λiΔu dx = −
∫

K

∇uh · ∇uhdx

and, consequently, ∇uh = 0 on K . Thus, uh is a constant on K . As uh = 0 on ∂K ,
uh = 0.

Let {φi}dim Pk
i=1 be the basis of Pk dual to the set of linear functions defined by (4.1)

and (4.2). In particular, the first 2k2 + 2 functions φi are dual to (4.1), and the
remaining ones are dual to (4.2) Then, the Pk (k ≥ 4) interpolated Galerkin finite
element space is defined as follows:

Vh = {vh ∈ H 1
0 (Ω) : vh|K =

2k2+2∑

i=1

ciφi +
dimPk∑

j=2k2+3

vjφj on each K ∈ Th},

(4.3)

where each φi and φj depend on K . The interpolated Galerkin finite element
solution for the Poisson equation (1.2) is defined by

uh =
∑

K∈Th

( 2k2+2∑

i=1

ciφi −
dimPk∑

j=2k2+3

Fj (f )φj

)
∈ Vh (4.4)

such that

(∇uh,∇vh) = (f, vh) ∀vh =
∑

K∈Th
(

2k2+2∑

i=1

viφi) ∈ Vh. (4.5)

5 Convergence Theory

We prove convergence for conforming and nonconforming interpolated Galerkin
finite elements separately. The conforming case is considered first.

Theorem 1 Let u and uh be the exact solution of (1.2) and the finite element
solution of (4.5), respectively. Then

‖u− uh‖1 ≤ Chk‖u‖k+1, (5.1)

where ‖ · ‖i is the standard Sobolev Hi(Ω) norm

Proof Testing (1.2) by vh =∑K∈Th
∑2k2+2
i=1 viφi ∈ H 1

0 (Ω), we have
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(∇u,∇vh) = (f, vh). (5.2)

Subtracting (4.5) from (5.2),

(∇(u− uh),∇vh) = 0. (5.3)

On one element K , testing (1.2) by vh = φj ∈ H 1
0 (K) for j > 2k2 + 2, using (4.2)

we obtain

(∇(u− uh),∇φj ) = −
∫

K

Δuφjdx+
∫

K

Δuhφjdx

=
∫

K

fφjdx− Fj (f ) = 0.

(5.4)

Combining (5.3) and (5.4) implies

|u− uh|21 = (∇(u− uh),∇(u− Ihu))
≤ |u− uh|1|u− Ihu|1,

where Ih is the interpolation operator to Vh. The following inequalities complete the
proof:

‖u− uh‖1 ≤ C|u− uh|1 ≤ C|u− Ihu|1 ≤ Chk‖u‖k+1.

Next we consider the two nonconforming cases.

Theorem 2 Let u and uh be the exact solution of (1.2) and either the finite element
solution of (2.5) or of (3.4), respectively. Then

|u− uh|1,h ≤ Chk‖u‖k+1, (5.5)

where | · |21,h = (∇h·,∇h·), k = 2 and 3 for (2.5) and (3.4), respectively, and ‖·‖k+1

is the standard Sobolev Hk+1(Ω) norm.

Proof We shall prove the case of k = 2. The proof of the cubic case is similar. Let

ũh = ∑K∈Th
(∑10

i=1 ũiφi + ũ0φ0

)
∈ Vh be the Galerkin finite element solution,

i.e.,

(∇hũh,∇hvh) = (f, vh) ∀vh ∈ Vh. (5.6)

Testing (5.6) by vh = φ0 on some K ∈ Th, we get

(∇hũh,∇hφ0) = (f, φ0)K =
∫

K

f (x)φ0 dx,
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(∇hũh,∇hφ0) = −
∫

K

Δũhφ0 dx

= −ũ0

∫

K

Δφ0φ0 dx = −ũ0,

where in the integration by parts, we use the fact ∇ũh · n
¯

is a polynomial of a
smaller (in fact, one less) degree on the boundary of K . That is, uh = ũh, i.e., uh
satisfies (5.6).

Let wh ∈ Vh. Then

|u− uh|1,h ≤ |u− wh|1,h + |uh − wh|1,h = |u− wh|1,h
+ sup
vh∈Vh

(∇h(uh − wh),∇hvh)
|vh|1,h ≤ |u− wh|1,h

+ sup
vh∈Vh

(∇h(u− uh),∇hvh)
|vh|1,h + sup

vh∈Vh
(∇h(u− wh),∇hvh)

|vh|1,h

≤ 2|u− wh|1,h + sup
vh∈Vh

(∇h(u− uh),∇hvh)
|vh|1,h .

The first term is the bounded by the interpolation error, i.e., the right hand side
of (5.5). We estimate the second term. Let [vh] denote the jump on an (internal)
triangle e of Th, after choosing an orientation for e. Then

(∇h(u− uh),∇hvh) =
∑

K∈Th

∫

∂

K
∂u

∂n
¯

vhdS =
∑

e∈∂Th

∫

e

∂u

∂n
¯

[vh]dS

=
∑

e∈∂Th

∫

e

(∂u
∂n

¯

−Πe ∂u
∂n

¯

)
(vh|e+ −Πevh|e+ − vh|e− +Πevh|e−)dS

=
⎛

⎝
∑

e∈∂Th

∫

e

(∂u
∂n

¯

−Πe ∂u
∂n

¯

)2
dS

⎞

⎠
1/2⎛

⎝
∑

e∈∂Th

∫

e±
(vh −Πevh)2dS

⎞

⎠
1/2

,

where Πe is the L2 projection onto the space of bivariate linear polynomials P1(e).
By the trace inequality, we continue above estimation,

(∇h(u− uh),∇hvh) ≤ C
⎛

⎝
∑

e∈∂Th

∫

e

(∂u
∂n

¯

− ∂Ihu
∂n

¯

)2
dS

⎞

⎠
1/2

·
⎛

⎝
∑

K∈Th
(

1

h
‖vh − Ehvh‖2

L2(K)
+ h‖∇(vh − Ehvh)‖2

L2(K)
)

⎞

⎠
1/2
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≤ C
⎛

⎝
∑

K∈Th
(

1

h
‖∇(u− Ihu)‖2

L2(K)
+ h‖D2(u− Ihu)‖2

L2(K)
)

⎞

⎠
1/2

h1/2|vh|1,h

≤ C
⎛

⎝
∑

K∈Th
(h2k−1|u|2

Hk+1(K)

⎞

⎠
1/2

h1/2|vh|1,h ≤ Chk|u|k+1|vh|1,h,

where Ih is the standard interpolation operator to Vh, see [11], and Ehvh ∈ Pk(K)
is a stable extension of (moments of) Πevh inside K . The proof is complete.

6 Numerical Tests

Let the domain of the boundary value problem (1.2) beΩ = [0, 1]3, and let f (x) =
3π2 sinπx sinπy sinπz. The exact solution is u(x, y) = sinπx sinπy sinπz. In all
numerical tests on Pk interpolated Galerkin finite element methods in this section,
we choose a family of uniform grids shown in Fig. 1.

We solve problem (1.2) first by the P2 interpolated Galerkin conforming finite
element method defined in (2.3), and by the P2 nonconforming finite element
method, on same grids. The errors and the orders of convergence are listed in
Table 1. We have one order of superconvergence for the interpolated Galerkin finite
element method (2.5), in bothH 1 semi-norm andL2 norm. We note that the standard
P2 conforming finite element method has one order of superconvergence in bothH 1

semi-norm and L2 norm. But the nonconforming P2 element has the optimal order
of convergence only.

Next we solve the same problem by the interpolated Galerkin P3 finite element
method (3.4) and by the P3 nonconforming finite element method. The errors and
the orders of convergence are listed in Table 2. Both methods converge in the optimal
order.

Fig. 1 The first three levels of grids
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Table 1 The error eh = Ihu − uh and the order of convergence, by the P2 interpolated Galerkin
finite element (2.3) and by the P2 nonconforming finite element

‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

Grid P2 interpolated element P2 nonconforming element

3 0.3298E−02 3.2 0.5367E−01 2.3 0.3769E−02 2.9 0.1079E+00 1.8

4 0.2538E−03 3.7 0.8380E−02 2.7 0.4439E−03 3.1 0.2751E−01 2.0

5 0.1704E−04 3.9 0.1150E−02 2.9 0.5315E−04 3.1 0.6861E−02 2.0

6 0.1089E−05 4.0 0.1493E−03 2.9 0.6542E−05 3.0 0.1712E−02 2.0

7 0.6859E−07 4.0 0.1898E−04 3.0 0.8141E−06 3.0 0.4276E−03 2.0

Table 2 The error eh = Ihu − uh and the order of convergence, by the P3 interpolated Galerkin
finite element (3.2) and by the P3 nonconforming finite element

‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

Grid P3 interpolated element P3 nonconforming element

3 0.3943E−03 4.0 0.1453E−01 2.7 0.3957E−03 4.0 0.1464E−01 2.7

4 0.2320E−04 4.1 0.1995E−02 2.9 0.2341E−04 4.1 0.2004E−02 2.9

5 0.1423E−05 4.0 0.2589E−03 2.9 0.1439E−05 4.0 0.2598E−03 2.9

6 0.8854E−07 4.0 0.3283E−04 3.0 0.8964E−07 4.0 0.3293E−04 3.0

Table 3 Comparison of P4 interpolated Galerkin and conforming Lagrange finite elements

P4 interpolated element P4 Lagrange element

Grid ‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

3 0.5624E−04 4.8 0.2450E−02 3.8 0.5577E−04 4.8 0.2471E−02 3.8

4 0.1794E−05 5.0 0.1587E−03 3.9 0.1789E−05 5.0 0.1592E−03 4.0

5 0.5592E−07 5.0 0.1000E−04 4.0 0.5587E−07 5.0 0.1002E−04 4.0

# unknowns 225471 250047

# iterations 927 3050

CPU 95.5 308.6

Finally, we solve the problem by the interpolated Galerkin P4, P5, and P6 finite
element methods, (4.3) with k = 4, 5, 6, and by the P4, P5, and P6 conforming finite
element methods. The errors and the orders of convergence are listed in Tables 3,
4, and 5. The optimal order of convergence is achieved in every case. Also in the
table, we list the number of unknowns, the number of conjugate iterations used in
solving the resulting linear system of equations, and the computing time, on the last
level computation. The number of unknowns for the P6 element is only about 2/3
of that of the P6 Lagrange element. The number of iterations for the P6 interpolated
element is less than 1/16 of that of the Lagrange element. The conditioning of the
system of the new element is much better while giving also a slightly better solution.
For the P6 elements, the new method uses less than 1/10 of the computer time than
that of the standard finite element.
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Table 4 Comparison of P5 interpolated Galerkin and conforming Lagrange finite elements

P5 interpolated element P5 Lagrange element

Grid ‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

2 0.3343E−03 5.7 0.9230E−02 4.7 0.3402E−03 5.7 0.9354E−02 4.7

3 0.5719E−05 5.9 0.3282E−03 4.8 0.5739E−05 5.9 0.3295E−03 4.8

4 0.8999E−07 6.0 0.1065E−04 4.9 0.8967E−07 6.0 0.1068E−04 4.9

# unknowns 47031 59319

# iterations 877 7080

CPU 31.1 267.0

Table 5 Comparison of P6 interpolated Galerkin and conforming Lagrange finite elements

P6 interpolated element P6 Lagrange element

Grid ‖eh‖0 hn |eh|1 hn ‖eh‖0 hn |eh|1 hn

1 0.2234E−02 0.0 0.5041E−01 0.3098E−02 0.0 0.6026E−01

2 0.5798E−04 5.3 0.2134E−02 4.6 0.5866E−04 5.7 0.2153E−02 4.8

3 0.5037E−06 6.8 0.3700E−04 5.8 0.5046E−06 6.9 0.3713E−04 5.9

# unknowns 8327 12167

# iterations 876 14335

CPU 18.0 181.5
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